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ABSTRACT

Markov Random Fields (MRFs) continue to be an
important and useful representation for modelling
textured images. Standard methods for MRF image
modeling make use of the equivalent Gibbs distribution
(GD) to express the joint probabilities of groups of
neighboring pixels. In this paper, we investigate a new
approach to the use of the GD in image modeling.
Specifically, we develop an adaptive approach to the
formation of clique potential functions for the
distribution. Traditional tools, such as the Multi-Level
Logistic (MLL) model, have been based on the use a a
predetermined and identical set of potential functions.
Here it is shown that be incorporating additional
parameters into the model inorder to control the shape of
these functions, it is possible to arrive at a more complete
parametrization of the image. A simple model based on
this concept is described and implemented, and image
simulations using the well-known Gibbs Sampler
algorithm are constructed to demonstrate the usefulness
of an adaptive set of potential functions.

1. BACKGROUND

Since the early 1980’s, Markov Random Fields and the
equivalent Gibbs Random Fields have found increasing
application as image procesing models for textured
image data for image and texture recognition [1], [4], [6],
segmentation [4], [5], and image restoration [3]. In the
basic paradigm, an image lattice is modelled as a 2-D
random field. if the local characteristics of regions
within the image are consistent, the field can be modeled
using the Markov property [2], with a group of pixels
called the neighborhood region defining the reign of
influence of any pixel in the image. The usefulness of
the MRF lies in its ability to equate the desired
probability distribution of any pixel in the image with a
simple conditional probability based on the pixels within
its neighborhood region. the model is further simplified
by the Clifford-Hammersley theorem, which equates the
conditional probability of the MRF to the joint
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probability described by the Gibbs distribution.
Gibbs distribution is given by:

The

()
PX=x) = S e T

where T is a 'temperature’ parameter [11] controlling the
flatness of the distribution,

J U
Z=2¢ T

xeX

is a normalizing constant (or partition function), and U(x)
is the energy function for the field, of the form

U= 2 Ve(x) ,

ceC

where ¢ is any individua! clique, C is the family of
cliques realized under the defined neighborhood system,
and the element V(x) represents the potential function
for each particular clique type. V(x) produces an output
dependent on the values of the members of the clique and
the base function used.

It is this clique potential function which forms
the building blocks of Gibbs distribution modeling. The
function may be defined explicitly, or may be implied
through equating the Gibbs distribution to some other
probability model. The characteristics of the clique
potential function depends on the characteristics of the
particular Markov Random Field being modeled, and the
flexibility of its definition allows for modeling of any
Markovian image, if only the correct potential function
can be determined for that image.



2. GIBBSIAN MODELS

There are two distinctly different approaches for
implementing the Gibbsian distribution with respect to an
image lattice. The first approach is to demonstrate an
equivalence between certain classes of GD and another
commonly used distribution, such as the Gaussian or
Poisson, and then proceed to use that distribution as a
basis for images which meet the equivalence criteria.
This method makes it possible to implement the Gibbs
distribution in a mathematically rigorous fashion without
the need for knowledge of the specific clique potential
functions involved. The second approach is to develop
clique potential functions directly, and to implement the
Gibbs distribution based on those functions. In this type
of implementation, a 'feature vector holding a few
descriptive parameters, such as a group of numbers
representing 0., 90. 180, and 270 degree clustering
cocfficients, are fed into the pre-determined potential
function equation to use in the GD calculation,

With either approach, there is an element of assumption
involved in the development of GRF models. This is a
result of the fact that, although the Hammersley-Clifford
theorem establishes a one-to-one correspondence
between MRFs and GRFs, it cannot and does not
determine the exact form of the clique potential
functions, which if calculated exactly for different texture
classes, or even individual textures, would be different
for every case. This can be seen by examining the
purpose of the clique potential function within the GD,
recognizing that the correct value to represent the output
of the potential function would exactly represent the
influence of one particular clique realization for the
specefic texture being examined. To assume that the
form and characteristics of the basic clique potential
function will remain constant for varying texture types
places tight limits on the textures which can be
reasonably represented.

It is instructive to examine the Multi-Level Logistic
(MLL) model [4][7], which is a clustering-based GRF
model that has been shown to have good results in image
recognition and segmentation applications. The clique
potential functions are defined according to the following
formula:

_ - B, ifall x in ¢ are equal
Ve®) = { f ., otherwise

where B represents the specific parameter for that type of
clique, as shown below in Figure 1.
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Figure 1. MLL Parameters

Single pixel clique parameters are specified strictly by
the gray-level value of the pixel, so that

Ve(x)=oak, for X=k.

In the MLL model, the o parameters control the
marginal distribution of the pixel variables (clustering
with respect to the center gray level value only), while all
other parameters control the size and direction of the
texture clustering.

3. ADAPTIVE CLIQUE POTENTIAL FUNCTIONS

We begin by analyzing the characteristics of the
MLL model’sclique potenital functions, assuming for
simplicity a 64x64 image with 8-level (3 bit) grey-level
resolution.  since the basis for the potentials is the
identity function, its value given a specific clique
realization is based solely on whether or not all the pixels
in the clique are identical. By definition, therefore, the
model cannot recognize the difference between a clique
composed of pixels of similar values, say 6 and 7, and a
clique composed of pixels of nearly opposite values, say
0and 7. Pixel similarities are completely ignored if there
is no exact match.

A clique potential function which recognized
non-identical similarities (for example, one which
replaced the identity function with a monotonically
decreasing linear or exponential potential function)
should be more robust and powerful than the base MLL
functions. Controlling the shape and characteristics of
the potential functions themselves is as significant as
controlling the amount and direction of clustering (i.e.,
the functions’ amplitude). The model utilized herein is
based on an exponential potential function, incorporating
two additional parameters into the feature vecto to
control the shaping of the function curve.

For the purposes of determining the advantage
of such an adaptive system, a relatively simple model is



used. The same basic feature vector as the MLL model is
used, with two additional parameters as follows:

0 =1[B1 B2 B3 P4 A 1]

where B1, B2, B3, and B4 represent horizontal, vertical,
45°, and 135° clustering parameters, respectively, A
represents function amplitude, and t represents the decay
constant of the exponential function. Single pixel cliques
are assigned an o parameter of 1, and cliques with three
or more pixels are not considered for computational
simplicity. The potential function is given as:

ax
Vc(X)= B(A-Ae T

+ 1)

where A(xij) is the difference between gray-level values
of clique pixels, B represents the appropriate directional
parameter, and A and t are defined as stated above.
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Adaptive Model Potential Functions
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Figure 2. MLL vs. Adaptive potential functions
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Figure 2 shows the difference between the
potential functions of the standard MLL model and the
new adaptive model defined here. Note that by setting
A=2 and 1 <<0.1, the new model can be made to
approximate the MLL model to within any degree of
accuracy. In addition, as A and t are made large, the
functions become increasingly linear in nature.

4. RESULTS

Several texture simulations were conducted as a
test of the new approach, using the Gibbs sampler
algorithm [3]. The algorithm begins with a random
image and changes pixels at random locations within the
image, based on the GD probability function for that
pixel’s neighbors. The algorithm normally converges
within 50 iterations, with 1 iteration equivalent to N2
probability decisions over an NxN image.

Figure 3 illustrates some of the texture
realizations corresponding to a single set of directional
clustering parameters, in this case a +1.0 horizontal
parameter with -1.0 vertical and diagonal parameters. the
simulation at top uses the MLL model approach, while
the other six use the new model with varying decay
constants and amplitude parameters. the effect of a
gradual potential function as opposed to the identity
function is evident in a number of physical characteristics
that can be observed: (1) increased contrast in images
with larger decay constants; (2) increased smoothness in
images having more nearly linear potential functions; and
{3} increased image entropy corresponding to images
with large decay constants and smaller amplitude
parameters.

The concept of the adaptive potential function,
used within the framework of the Gibbsian probability
model, can also be expanded in scope to further enlarge
the types of textures which may be modeled using the
MRF approach. This may be accomplished by adding
additional function-shaping parameters to control such
potential function characteristics as masimum and
minimum locations, function symmetry, symmetry
between clique types, or even point-by-point function
definitions if desired. Each of these alterations would
increase the number of physical characteristics which are
describable under the model.



A =2.0,1<<| (MLL model)
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Figure 3. Simulated images with clustering parameters
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