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ABSTRACT 
 

This paper presents a time-aligned singular value 
decomposition (SVD) analysis using dynamic time 
warping (DTW) for the time alignment as a method for 
speaker identification.  SVD analysis is typically used for 
fast spectral matching based on a global representation of 
an entire utterance.  We incorporate temporal 
normalization directly into the decomposition by using the 
DTW warping path to time align the rows of the feature 
matrix prior to SVD analysis.  Speaker identification 
results using the TI-46 database indicates that the time-
aligned SVD significantly improves accuracy for all 
threshold choices, with a decrease in equal error rate from 
xx% to xx%. 

1. INTRODUCTION 
 

Applications of speaker identification for voice 
authentication or other security purposes require 
computationally efficient algorithms that are able to build 
accurate speaker models with limited enrollment data, 
sometimes as little as a single utterance [1].  An example 
of such an application is the use of verbal passphrases for 
computer login and re-entry.  The newest versions of 
Macintosh�s operating system, MacOS, have implemented 
a global utterance matching algorithm based on a Singular 
Value Decomposition (SVD) of each utterance [2].  This 
approach, based on a subspace interpretation of an 
utterance�s feature space [3], attempts to separate the 
temporal and spectral information as generated by a 
specific speaker. 

Advantages of this approach include a very fast and 
easily implemented identification metric as well as an 
ability to deal with extremely limited amounts of training 
data.  Other methods such as Hidden Markov Models 
(HMMs) or Gaussian Mixture Models (GMMs), which 
need a relatively large amount of data for statistical 
parameter estimation, are unsuited to this environment. 

The method used for the MacOS application was 
combined with a DTW algorithm to improve overall 
identification accuracy.  The results  indicated that the 
DTW analysis provided a much better separation between 
imposter and target speaker scores than the SVD scoring.  
The SVD scores in isolation yielded only mediocre 
accuracy and have significant potential for improvement.  
However, since the types of errors made by the SVD 
metric appeared to be somewhat orthogonal to those of the 
DTW algorithm, their inclusion was able to make a 
measurable difference in overall system accuracy. 

This original method used SVD and DTW 
independently of each other, using a simple two-
dimensional threshold as a decision criterion.  In 
particular, direct SVD analysis does not take advantage of 
the temporal information generated by a DTW alignment.  
To do this, we propose a new SVD-based method using a 
time-warped feature matrix from the test utterance, so that 
the SVD analysis can be re-aligned to take advantage of 
the temporal information generated by the DTW analysis.  
The hypothesis is that this extra information will improve 
separation between the target speaker scores and the 
imposter scores. 
 

2. SVD ANALYSIS 
 
Each utterance is represented by an M x N matrix of 
frames, with rows containing the feature information for a 
frame and columns containing a specific feature over time.  
For this experiment, twelve LPC-derived cepstral 
coefficients and an energy measure are used as the primary 
features.  In addition, deltas and delta deltas are also 
computed for each of these features, creating a feature 
vector of 39 values.  Frames are 10ms with no 
overlapping, giving typical feature matrixes of about 100 x 
39. 

The resulting feature matrix, F, can be represented as 
an orthonormal decomposition [4]: 
 
 F = U S VT. (1) 
 



 

 

U is an M x R left singular matrix, S is an R x R 
diagonal matrix of singular values, and V is an N x R right 
singular matrix.  Both U and V are column-orthonormal so 
UTU = VTV = I.  The R singular values of S are in non-
increasing order, so the full decomposition can easily be 
reduced to a �filtered� version of the original matrix by 
decreasing the number of singular values used.  This 
process is generally referred to as reduced singular value 
decomposition, and the order R is determined by either 
arbitrarily fixing the number of desired singular values or 
by taking all which are greater than a given threshold. As 
discussed in [2], there are multiple interpretations of the 
role of the matrices U and V with respect to the feature 
vector created by a speech utterance.  One reasonable 
viewpoint is that U creates an orthogonal projection of the 
spectral features and that V creates an orthogonal 
projection of the temporal content.  Following the 
derivation given in [2], we can use this viewpoint to create 
a distance metric to evaluate closeness between two 
decompositions. 

To evaluate the spectral characteristic�s similarity 
between two utterances, a SVD is performed on the 
reference template, Fk, and the test utterance, Fl: 
                               
 Fk = Uk Sk Vk

T, (2) 
 Fl = Ul Sl Vl

T. (3) 
 
Using the V matrices to map the test utterance singular 
value matrix, Sl, onto the reference utterance subspace, the 
following metric can be established [2]: 
 
 Dl|k = (Vl

 T Vk)T Sl (Vl
 T Vk). (4) 

 
The degree to which Dl|k deviates from a diagonal matrix 
is related to the amount that the test utterance differs from 
the reference utterance.  As Vt tends to Vk, Dt|k becomes a 

diagonal matrix, converging to St = Sk.  One way to 
measure the diagonality of the Dj|S� matrix is by taking the 
Frobenius norm of the off-diagonal terms: 
 

 | Dl|k |F = ∑∑
i j

ijd 2 , i ≠ j.  (5) 

 
The closer this measure is to zero, the more similar 

the two utterances. 
 

3. TIME-ALIGNED SVD 
 
Dynamic time warping (DTW) is a well-known algorithm 
for finding a frame-by-frame mapping from a test 
utterance to a reference template.  This mapping is done to 
eliminate temporal variation between one utterance and 
the next.  By normalizing the temporal variation, the 
characteristics of the test and reference utterances can be 
compared directly using simple spectral difference 
measures. 

The DTW algorithm used here implements the 
standard dynamic programming version of the algorithm, 
using typical path constraints [5].  Variance-weighted 
Euclidean distance is used as the distance measure.  To 
create the speaker template, the median-length training 
utterance is used for template initialization.  Time-warped 
training utterances are averaged to create a new template. 

To incorporate the temporal information gained from 
the DTW time-alignment directly into the SVD method as 
desired, the warping path is used to map the original 
feature matrix into a new time-normalized feature matrix 
prior to the decomposition process.  The time aligned 
feature matrix, Ft: is decomposed as before: 
 
 Ft = Ut St Vt

T. (6) 
 

The matrix resulting from the mapping of St onto the 
reference utterance subspace is given as Dt|k: 

 
 Dt|k = (Vt

 T Vk)T St (Vt
 T Vk). (7) 

 
The Frobenius norm of the off-diagonal terms is then 

calculated to generate a SVD score for the test utterance.  
To compare the results and measure improvement, the 
SVD method is done on both the original and time-aligned 
feature matrices. 
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Figure 1 - A Representation of SVD 



 

 

4. RESULTS 
 
4.1. Time-aligned SVD vs. Standard SVD 

 
The TI 46-Word Speaker-Dependent Isolated Word 
Corpus (TI46) was used to conduct the analysis of the new 
time-aligned SVD method.  The full corpus consists of 
eight male and eight female speakers repeating short 
words and letters.  The utterances are sampled at 12.5 kHz 
and are about one second in length.  There are ten training 
utterances and 16 test utterances for each word and letter.  
Because of the relatively short duration of the utterances in 
this corpus, it was unknown how much influence the 
addition of temporal normalization to the SVD algorithm 
would have; however, since passwords and passphrases 
are often fairly short, this difficulty is appropriate for the 
task in mind. 

 
Both the unaligned and aligned SVD methods were 

used to identify the males in the TI-46 corpus.  The 
females� utterances were not used since the gender 
difference would make the identification task easier and 
cause the percentage of false positives to artificially 
decrease.  By using one of the eight speakers as a target 
and the remaining seven as imposters, a set of eight target 
tests and 56 imposter tests was created for each speaker.  
With each male speaker as a target for two different 
words, a total experimental set of 128 target tests and 896 
imposter tests was constructed.  Figure 2 shows a table of 
which words are used for which speaker.  Only two 

syllable words were chosen for these experiments.  An 
SVD score was generated for both the time-aligned 
matrices and original feature matrices for each of the 1024 
tests.  The size of the singular value matrix S was fixed at 
ten for this portion of the experiment.  An example plot of 
the scores for male number 4 for both methods is shown in 
figures 3 and 4.  The �+� symbol represents scores for 
target speakers and the �o� symbol represents the scores 
for imposters.  Notice that the time-aligned SVD method 
creates a larger vertical separation between the imposter 
scores and the target scores. 

A Receiver Operating Characteristics (ROC) curve 
showing false accept versus false reject rates was also 
generated for each method.  This plot is shown in figure 5.  
The original SVD method is shown by the dotted line and 
the solid line designates the new SVD method.  The new 
method dominates for all possible thresholds.  Note that 
these error rates do not include the influence of DTW 
scores, which would improve both methods. 
 
4.2. Number of Singular Values vs. EER 
 
The second experiment performed was to evaluate 
performance of both algorithms as a function of the order 
of the SVD used.  The number of singular values R was 
varied between 1 and 39 and the equal error rate (EER) 
calculated for each trial.  A plot of  EER vs. R for both 
methods is shown in Figure 6.  Again, the dotted line 
designates the original SVD method and the solid line 
designates the new method.  From the plot it can be shown 
that the time-aligned SVD scores provide greater 
separation between target scores and imposter scores for 
most values of R. 
 

 
Figure 3 � SVD Without Time-Alignment 

 
Figure 4 � SVD With Time-Alignment 

Word Speakers associated with a word 
rubout m1 m3 m4 m8 

enter m4 m5 m7 m8 
erase m1 m2 m6 m7 

repeat m5 m6 m2 m3 
 

Figure 2 � Table of Words Spoken by Each Speaker 



 

 

4.3. DTW/SVD Combined Threshold 
 
The final experiment demonstrates how the DTW scores 
can be combined with the SVD scores to improve error 
rates.  To accomplish this task, two different thresholds 
must be determined; one for the DTW scores and another 
for the SVD scores.  First, the DTW threshold was 
determined by finding the EER for the DTW scores alone 
and chosing the threshold that gives an EER.  Then, an 
ROC curve was generated for the SVD scores of both 
methods using the DTW scoring as an additional 
threshold.  This curve is shown in Figure 7.  Once again, 
the original SVD method is the dotted line, and the new 
SVD method is the solid line. 
  

5. CONCLUSIONS 
 
The use of the alignment path obtained through DTW time 
normalizes the feature matrix to enable direct rather than 
indirect incorporation of temporal information into the 
SVD scoring metric.  The results indicate that this new 
metric achieves a greater separation between the target 
scores and imposter scores.  Using 10 singular values in 
the SVD decomposition, an improvement was made in 
EER from xx% to xx%.  Overall, the time-aligned SVD 
approach may improve system accuracy for tasks where 
enrollment data is severely limited. 
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Figure 7 � ROC Curve for DTW + SVD 
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Figure 5 � ROC Curve for SVD alone 
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Figure 6 � EER vs. Number of Singular Values Used
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