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Capacity and Complexity of HMM Duration
Modeling Techniques

Michael T. Johnson

Abstract—The ability of a standard hidden Markov model
(HMM) or expanded state HMM (ESHMM) to accurately model
duration distributions of phonemes is compared with specific
duration-focused approaches such as semi-Markov models or
variable transition probabilities. It is demonstrated that either
a three-state ESHMM or a standard HMM with an increased
number of states is capable of closely matching both Gamma
distributions and duration distributions of phonemes from the
TIMIT corpus, as measured by Bhattacharyya distance to the
true distributions. Standard HMMs are easily implemented with
off-the-shelf tools, whereas duration models require substantial
algorithmic development and have higher computational costs
when implemented, suggesting that a simple adjustment to HMM
topologies is perhaps a more efficient solution to the problem of
duration than more complex approaches.

Index Terms—Duration models, hidden Markov models, speech
recognition.

I. INTRODUCTION

AWELL-KNOWN limitation of the hidden Markov model
(HMM) used for tasks such as speech recognition is

that the underlying Markov assumption constrains the state
occupancy duration to be exponentially distributed according
to , where is the duration, and is the
self-transition probability. Since this is often inconsistent with
the known duration distributions of the observation sequences
being modeled, there has been substantial research in improving
the HMM’s duration modeling capability, originating with the
work of Ferguson [1] and Levinson [2]. Duration modeling
has been shown to yield small but consistent improvement in
speech recognition accuracies [3]–[5].

The approaches to HMM duration modeling can be broken
into three categories:

• Hidden semi-Markov models (HSMMs), a form of
segment model [6], sometimes called semi-HMMs.
Here, the occupancy of each state is chosen directly
from a specified duration distribution. This group
includes both Ferguson’s explicit duration HMM
(EDHMM) [1], which learns a discrete duration distri-
bution, and Levinson’s continuously variable duration
HMM (CVDHMM) [2], which learns a parametric
duration distribution. There have also been algorithms
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developed to implement upper and lower bounds on
duration without specific probabilistic modeling [7].

• Variable transition HMMs (VTHMMs). In these
models, the transition probabilities of each state are a
function of the state’s current occupancy, allowing for
arbitrary duration distribution. This approach has been
introduced by multiple authors, including Ramesh and
Wilpon’s inhomogenous HMM (IHMM) [8], Sin and
Kim’s nonstationary HMM (NHMM) [9], and models
by Vaseghi [10]–[12], Yoma et al. [13], [14], and Park
et al. [15].

• Standard HMMs with more states and/or more com-
plex state topologies, often coupled with state distri-
bution tying, e.g., the expanded state HMM (ESHMM)
[4], [16]–[18].

Regarding VTHMMs, it is straightforward to show that
there is a one-to-one transformation between a set of variable
transition probabilities and a corresponding discrete
duration distribution [19]. Provided that the exit tran-
sition probabilities of the two models are in the same ratios,
the net probability of any given state sequence
under an arbitrary observation sequence is equivalent under
the EDHMM and the VTHMM approaches, so all VTHMM
methods outlined above are essentially variations on Fer-
guson’s original EDHMM with explicit discrete distributions.
The number of duration parameters needed under these ap-
proaches varies depending on whether the representation is
discrete or parametric but is typically small relative to the
number of distribution parameters. A parametric HSMM ap-
proach could perhaps be viewed as yielding the most direct
insight into a model’s duration properties.

The duration modeling capacity of a standard HMM is
controlled by the duration of the underlying Markov chain
[20], [21], with an overall duration distribution that can be
represented as a series-parallel network of exponential random
processes [4], [22]. A number of specific topologies have been
investigated in the context of ESHMM work, including the Type
A, Type B, and Fergusson topologies [4], which are shown in
Fig. 1, as well as other unique configurations suited to specific
tasks, such as including independent paths within the topology
to achieve multimodal duration distributions [18]. Under the
Type A configuration, the resulting duration is a modified neg-
ative binomial distribution, and under the Fergusson topology
with substates, the result is equivalent to a VTHMM
and, thus, also Ferguson’s EDHMM. Russell and Cook [4]
found similar accuracies on digit and word-recognition tasks
when comparing Type B topology ESHMMs with explicit
duration models.
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Fig. 1. HMM topologies. (a) Type A (no skip HMM). (b) Type B. (c)
Fergusson. (d) One-skip HMM.

The impact on computational complexity due to any of
the HSMM or VTHMM approaches is roughly an increase
linearly proportional to the maximum number of states 1.
There have been several excellent papers giving improvements
to the forward–backward and Viterbi algorithms for EDHMMs
[23], [24]. A detailed comparison of complexities for different
models will be given in Section IV.

II. GAMMA DISTRIBUTION EXPERIMENTS

HSMM re-estimation equations have been derived for a
number of different parametric duration distributions, in-
cluding, in particular, the Gamma distribution proposed in
Levinson’s original work [2]. Gamma distributions have been
shown to match those typically seen in speech phonemes [25].

Since both explicit and parametric HSMMs can accurately
model the Gamma distribution, we examine the comparative
ability of standard HMMs and ESHMMs. Analytic distribution
computation and parameter fitting is complex and topology de-
pendent, so simulations were conducted using Markov chains
of the desired topology with observation sequence lengths
chosen from the specified Gamma distribution and parame-
ters learned via the Baum–Welch algorithm. The distribution
associated with the trained HMM was then determined by
generating observation sequences and creating an empirical du-
ration distribution. The topologies were designed to guarantee
a minimum one-state duration capability, by allowing the entry
state to transition to all other states.

Bhattacharyya distance, which is a simple symmetric metric
between two distributions given by ,
is used to measure the distance between the original Gamma dis-
tribution and the distribution of the trained HMM. Other metrics
could also be used, yielding similar results. To help visualize
this metric, Fig. 2 shows a Gamma distribution with a mean of
5, with curve-fitted simulated distributions having distances of
0.11, 0.03, 0.01, and 0.002 superimposed. A “close fit” can be
thought of as a distance in roughly the 0.001–0.01 range.

For the Gamma distribution experiments, the number of
HMM states and ESHMM substates is varied from 1 to 6, while
the mean of the Gamma distribution is varied from 1 to
25. This range is similar to that of average phoneme durations
given a typical 10 ms observation frame rate.

The experiments were run with Type B topology ESHMMs
as well as with standard left-to-right HMMs with both no-skip
(i.e., Type A) and one-skip topologies, illustrated previously in

1Vaseghi’s work ([10, Eq. 15]) gives an expression for the Viterbi algorithm
for a VTHMM without this increase. This algorithm does not maximize over
the possible durations of the preceding state, which, while functional, does not
yield the optimal state sequence under the model.

Fig. 2. Examples of distributions (� = 5) with varying Bhattacharyya
distances.

Fig. 3. Bhattacharyya distance between simulated HMMs and Gamma
distribution.

Fig. 1. Eight iterations of Baum–Welch were used for estima-
tion, 20 000 observation sequences were used for constructing
output histograms, and results were averaged over 100 runs.
Results for all cases were identical to within visual discrim-
ination. Illustrative results for the one-skip HMM are shown
in Fig. 3. With one state, the distribution is purely exponential
and matches the desired distribution very poorly; however, the
ability of the model to track the target Gamma distribution im-
proves rapidly as the number of total states is increased, then
begins to converge.

III. TIMIT PHONEME EXPERIMENTS

The same simulation mechanism from the previous section
is used to see how well standard HMMs are able to model
duration distributions of phonemes taken from the TIMIT
corpus [26], a corpus which includes expertly labeled phoneme
boundaries, giving good distribution approximations for read
speech. The average duration of observation frames for the
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Fig. 4. Bhattacharyya distance between simulated HMMs and TIMIT
distributions.

TIMIT phonemes, assuming a 10 ms observation frame rate,
varies between two and 17, with over 70% of the phonemes
having mean durations of between five and ten observations.

Identical experimental setup and simulation settings were
used here, with no-skip HMMs, one-skip HMMs, and
three-state Type B topology ESHMMs. The results were
similar between the three approaches; with the no-skip HMM
and ESHMM results nearly identical as before but the 1-skip
HMM showing a slightly larger Bhattacharyya distance to
the target distributions. One possible hypothesis is that this
increase is due to the existence of multiple possible paths for
sequences of the same net duration, leading to poorer transition
estimation. Fig. 4 illustrates the results for the no-skip HMM
case.

For ease of visualizing the results, the phonemes are ordered
along the axis in order of increasing average duration. For
additional reference, the Bhattacharyya distance between the
target phoneme distribution and a maximum likelihood (ML)
fit two-parameter Gamma distribution is also displayed.

It can be easily seen that although a small number of states
does in fact do a relatively poor job of fitting the phoneme dis-
tributions, the distance to the target distribution drops quickly
as the number of states is increased. The distances converge to
an asymptote close to those of the directly fitted Gamma dis-
tribution, and beyond about nine total states, there is little addi-
tional improvement. The average Bhattacharyya distance across
all phonemes for nine or more states (all topologies) is approx-
imately 0.0075.

IV. COMPLEXITY ANALYSIS

The forward, backward, and Viterbi algorithms are the central
elements of HMM training and testing. All have the same time
complexity, for both standard HMMs and for any of the duration
HMMs shown above. The notation used is as follows:

total number of unique states in HMM set;
average number of predecessor states;
number of observations;
maximum duration in HSMM models;

number of expansion substates in ESHMM models;
number of operations to compute an observation like-
lihood.

Note that the operations needed to compute an observation
likelihood is an important component of the overall complexity.
Using Gaussian mixture models, typically for
diagonal covariances or for full covariances, where

is the number of mixtures, and is the number of features
in each observation.

The equation for the standard forward algorithm is

The complexity of the standard algorithm is normally given
as ; however, this is an approximation that is more ac-
curately given as since observation likelihoods
can be precomputed over all states and times and since the sum-
mation need only include predecessor states.

For the HSMM, the algorithm becomes

Using a recursion to save some of the accumulated terms, as
outlined in [24], the complexity of this algorithm can be given
as . By precomputing all observation like-
lihoods and implementing the summation recursively so that
there is only one new multiplier in the product term for each
term in the summation, the total complexity can be reduced to

. More recent work in improving the com-
plexity can be seen in Yu and Kobayashi [23], who developed
a new recursion using a duration-dependent forward variable

, with net complexity . A sim-
ilar recursion for the VTHMM approach has been given by
Ramesh and Wilpon for their IHMM in [8], with complexity

, and it is likely that this could also be refor-
mulated after the Yu and Kobayashi approach.

For the ESHMM approach, the standard algorithm is used,
and the impact on computational complexity is an increase in the
number of states. Since the substate observation distributions
are tied, a linear expansion topology, such as any of those shown
in Fig. 1, gives negligible impact on the size of and a linear
increase on the value of . This results in a net complexity of

.
A summary of these complexities is given in Table I. All

of the algorithms have an term that involves com-
puting observation likelihoods. Focusing on the post-observa-
tion computations and ignoring the common terms, the dif-
ference among the remaining terms is essentially versus

versus versus , as highlighted in
the table. is two to three for left-to-right HMMs, while
is typically 50 or more. Looking at the results in the previous
sections, a reasonable value for in a three-state configuration
would perhaps be two or three. There is also a slight difference
in the number of multipliers needed in the innermost loop of
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TABLE I
COMPARISON OF ALGORITHM TIME COMPLEXITIES

each iteration of the recursion, with only one required for stan-
dard HMM/ESHMM and about three to four per iteration for
the more complex HSMM and VTHMM algorithms. Overall,
this indicates that the algorithm speed (after precomputing all
likelihoods) for the ESHMM is roughly an order of magnitude
faster than that of the most efficient HSMM algorithms to date
and one to two orders of magnitude faster than most VTHMM
or HSMM algorithms currently in use. It should be noted that
with any of these algorithms, the time to compute observation
likelihoods is a large part of the overall complexity, substantially
diminishing the differences between the different approaches.

Recent work [27] has compared empirical speech recognition
accuracies for HMMs, HSMMs, and ESHMMs as a function of
the computation speed. The results demonstrated very similar
accuracies across all methods, with HMMs giving better results
at low real-time factors and ESHMMs and HSMMs yielding
small improvements at high real-time factors.

V. CONCLUSIONS

It has been demonstrated that either a standard HMM or
an expanded state HMM, with a fairly small increase in total
number of states, is able to closely model the distributions
of actual phoneme durations, performing comparably to the
parameterized Gamma distribution families typically used in
HSMMs. This suggests that standard models, coupled with
a moderate increase in overall topological complexity and
state distribution parameter tying, are already well suited to
handling nonexponential duration distributions. This is almost
certainly a much better practical choice for duration modeling
than development and implementation of more complex and
computationally expensive models with explicit modifications
to handle duration probabilities, for which off-the-shelf tools
are not currently available.
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