
 

 

 

 

 

HIDDEN MARKOV MODEL BASED 

ANIMAL ACOUSTIC CENSUSING: 

LEARNING FROM SPEECH PROCESSING 

TECHNOLOGY 
 

 

 

by 

 

 

 

 

C. Kuntoro Adi, M.A., M.S. 

 

 

 

 

 

A Dissertation submitted to the Faculty of the 

Graduate School, Marquette University, 

in Partial Fulfillment of 

the Requirements for 

the Degree of 

Doctor of Philosophy 

 

 

 

 

Milwaukee, Wisconsin 

 

 

 

 

May, 2008 

 

 

 



 1 

 

 

 

 

Copyright 

by 

Kuntoro Adi 

2008 



 2 

Marquette University 

 

 

This is to certify that we have examined 

this copy of the 

dissertation by 

 

 

C. Kuntoro Adi, M.A., M.S. 

 

 

and have found that it is complete 

and satisfactory in all respects. 

 

 

This dissertation has been approved by: 

 

 

______________________________________ 

Michael T. Johnson, Ph.D., P.E. 

Dissertation Director, Department of Electrical and Computer Engineering 

 

 

______________________________________ 

Craig A. Struble, Ph.D. 

Committee Member 

 

 

______________________________________ 

Richard J. Povinelli, Ph.D., P.E. 

Committee Member 

 

 

______________________________________ 

Tomasz S. Osiejuk, Ph.D. 

Committee Member 

 

 

______________________________________ 

Xin Feng, Ph.D. 

Committee Member 

 

 

Approved on 

 

April 28, 2008 



 i 

ABSTRACT 

 

Individually distinct acoustic features have been observed in a wide range of vocally 

active animal species and have been used to study animals for decades.  Only a few 

studies, however, have attempted to examine the use of acoustic identification of 

individuals to assess population, either for evaluating the population structure, population 

abundance and density, or for assessing animal seasonal distribution and trends. 

This dissertation presents an improved method to acoustically assess animal 

population. The integrated framework combines the advantages of supervised 

classification (repertoire recognition and individual animal identification), unsupervised 

classification (repertoire clustering and individual clustering) and the mark-recapture 

approach of abundance estimation, either for population structure assessment or 

population abundance estimate. The underlying algorithm is based on clustering of 

Hidden Markov Models (HMMs), commonly used in the signal processing and automatic 

speech recognition community for speaker identification, also referred to as 

voiceprinting.  

A comparative study of wild and captive beluga, Delphinapterus leucas, 

repertoires shows the reliability of the approach to assess the acoustic characteristics 

(similarity, dissimilarity) of the established social groups.  The results demonstrate the 

feasibility of the method to assess, to track, and to monitor the beluga whale population 

for potential conservation use.  

For the censusing task, the method is able to estimate animal population using 

three possible scenarios. Scenario 1, assuming availability of training data from a specific 
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species with call-type labels and speaker labels, the method estimates total population.  

Scenario 2, with availability of training data with only call-type labels but no individual 

identities, the proposed method is able to perform local population estimation. Scenario 3 

with availability of a few call-type examples, but no full training set on individual 

identities, the method is able to perform local population estimation. 

The experiments performed over the Norwegian ortolan bunting, Emberiza 

hortulana, data set show the feasibility and effectiveness of the method in estimating 

ortolan bunting population abundance.   
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1 

CHAPTER 1 

INTRODUCTION 

 

1.1. Background and motivation 

Studies in bird vocalizations within a single species of bird suggest that differences in the 

songs of individual birds are distinguishable. Birds use vocal differences to identify other 

members of their species nearby and to identify individual birds in their immediate 

vicinity. They have been shown to use vocalizations in recognizing their mates, their 

parent, and to differentiate between neighbors and strangers (Holschuch, 2004). 

A wide variety of approaches has been used to count and monitor bird populations 

within a species (Peake, McGregor 2001). Most of those approaches do not require the 

identification of individual birds. Methods that involve the ability to identify individual 

animals are important for providing ecological information that can not be obtained in 

other ways. Such information generally falls into three categories, namely: (a) managing 

census error, (b) estimating demographic information such as age, morbidity, the time of 

migration, and (c) detecting individual behavioral differences (McGregor, Peake, 1998). 

Individually distinct acoustic features have been observed in a wide range of 

vocally active animal species, for example: cetaceans (Janik et al., 1994), bats (Master et 

al., 1995), and primates (Butynski et al., 1992).  Within birds, the presence of vocal 

individuality has been shown in the European Bitterns and Black-throated Divers (Gilbert 

et al., 1994), American Woodcock (Beightol and Samuel, 1973), Australian Kingfishers 

(Saunders and Wooller, 1988), and Tawny Owls (Galeotti and Pavan, 1991).  
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Techniques for identifying individual animals by the variations in vocalization fall 

into two broad categories: qualitative and quantitative (Mc.Gregor et al., 2000). The 

qualitative approach involves comparison of spectrograms by human observers. Much of 

the popularity of this approach can be traced to its conceptual simplicity and ease of 

operation (Wakita, 1976). However, while manual inspection and labeling of the sound 

spectrogram allow measurements to be made simply and with reasonable accuracy, the 

variables measured are too few to characterize the spectral content and patterning of a 

signal. So, qualitative methods are typically followed by more rigorous quantitative 

methods that employ a detailed measurement of the frequency and temporal parameters 

of the vocalizations.  

Several different quantitative approaches for analyzing vocal individuality exist. 

Otter (1996) was able to differentiate individual birds through a series of nested ANOVA. 

Holschuch (2004) did the same using Discriminant Function Analysis (DFA). Current 

research on bird vocalizations has begun to use more advanced methods to perform 

identification. Kogan (1997) evaluated two methods, namely, dynamic time warping 

(DTW) and hidden Markov models (HMMs) for automated recognition of zebra finche 

and indigo bunting song-units from continuous readings. Ito et al. (1996) used dynamic 

programming (DP) matching to classify budgerigar contact calls into natural groups. 

Meanwhile, Harma (2003) compared simple sinusoidal representation of syllables to 

identify the willow warbler bird species. Somervuo (2004) investigated the possibility of 

common chaffinch and great tit bird species recognition based on the syllable pair 

histogram of the song.  In marine mammals, Buck and Tyack (1993) utilized DTW to 

classify 15 dolphin signature whistles into 5 groups.  Later Brown et al. (2007) used 



 

 

3 

DTW to measure the dissimilarity of killer whale calls and to classify the calls using 

frequency contours of their biphonic vocalizations.  

Acoustics has been used to study animals for decades. For rare or elusive species 

that are hard to monitor or to mark visually, the possibility of recognizing individuals by 

their vocalizations may provide a useful census tool (e.g. Saunders and Wooller, 1998; 

Gilbert et al., 1994; Jones and Smith, 1977). Only a few researchers, however, have 

attempted to examine the use of vocalizations to assess populations.  The term assessment 

is usually used to describe the process of evaluating the status of population relative to 

some management goal. This involves studies of the population structure, abundance and 

density, seasonal distribution and trends, and the evaluation of human-made noise 

impacts on the animals (Mellinger and Barlow, 2003).   

In a few studies the feasibility of using vocal individuality (vocalizations) to 

monitor habitat quality has been demonstrated. Peake and McGregor (2001) employed a 

statistical Pearson-correlation approach to identify corncrake vocal individuality and to 

estimate numbers of individuals in species. Holschuh (2004) used discriminant function 

analysis to explore vocal individuality of the saw-whet owl to monitor its habitat quality. 

The use of vocal individuality in a census must be capable of discriminating between 

unknown groups and identifying new individuals entering a population. McGregor (2000, 

2001) suspected that both features are problematic for current techniques such as 

discriminant function analysis (McGregor, 2000, 2001). The use of discriminant function 

analysis can only classify vocalizations of known individuals. It is not able to 

accommodate vocalizations of new individuals.  
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Terry and McGregor (2002) suggest a different method to monitor and census 

male corncrake species.  They employ three different neural network models, namely, a 

backpropagation and probabilistic network to re-identify the members of the known 

population (monitoring task) and a Kohonen network to count a population of unknown 

size (census task).  Neural networks have been used in a wide range of discrimination 

tasks.  Terry and McGregor see neural networks as having potential in monitoring and 

censusing because (a) they can work with data that cannot be separated linearly, (b)  the 

learning procedure that creates the network allows generalization to unknown data.  

In studies of cetaceans, the best examples of the use of vocalizations in 

assessment are the studies of sperm whale population (Barlow and Taylor, 1998), the 

humpback whales in the Caribbean (Garrison et al., 2003), and harbor porpoises in the 

Northwest Atlantic (Palka, 2003), where combined visual and acoustic methods have 

significantly improved the population estimate. 

The objective of this dissertation, therefore, is to develop an improved method to 

assess population (namely, animal population structure and animal abundance) based 

upon animal vocalizations.  The suggested framework is based on Hidden Markov 

Models (HMMs) commonly used in the signal processing and automatic speech 

recognition community.  Previous and current studies show the feasibility of the HMM – 

based method to automatically classify ortolan bunting call-types, to identify individual 

birds (Adi, Johnson, 2004, 2006; Trawicki et al., 2005), to classify African elephant 

vocalizations (Clemins, 2005) and to cluster Beluga repertoires (Clemins, 2005; Adi et 

al., 2008).  This dissertation proposes an integrated method of the supervised 

classification task (repertoire recognition and individual animal identification), 
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unsupervised classification task (repertoire clustering and individual animal clustering) 

and the mark-recapture approach of abundance estimation, either for population structure 

assessment or population abundance estimate.  

The method uses less effort and cost, is less time consuming and is more accurate. 

The most compelling reason for using individually distinctive vocalizations as a census 

tool is that the technique causes minimal disturbance and does not require the capture and 

handling of the animals. Thus it will be useful for species that are secretive, sensitive to 

disturbance, and which cannot be readily caught or observed. These are often species of 

considerable conservation interest. 

 

1.2. Contribution and significance 

This research has applications in many areas. These include bioacoustics, bird and marine 

mammal communication, behavior and conservation, audio signal processing, and 

machine learning. The main contribution of this study is the development of robust 

models that will improve our understanding on bird and marine mammal communication 

and behavior. It will also afford an easier way for humans to monitor and census 

cetaceans and bird populations.  For the field of machine learning, the research 

contributes to the improvement upon existing HMM-based clustering by incorporating an 

initialization method to build initial clusters, adding dissimilarity analysis and deltaBIC 

analysis to estimate the number of clusters in a data set, using a resampling dissimilarity 

computation to assess consistency of the clustering results. 
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Though the animals studied in this research are the ortolan bunting and beluga 

whale, the methods and approaches used here can be expanded and adapted for other 

animal species.  

The results of this study will be disseminated to the broader research community 

by means of journals articles and conference papers. Due to the multi-disciplinary nature 

of the study, these research results will be of interest to people who work in the areas of 

animal behavior and conservation, speech signal processing and machine learning.  

 

1.3. Dissertation overview 

This section describes the organization of the dissertation.  Chapter Two provides the 

necessary background knowledge in the field of speech processing, bioacoustics and 

machine learning.   

Chapter Three discusses feature selection methods to discover the features that 

can be employed for beluga whale and ortolan bunting repertoire analysis and for bird 

abundance estimation.  It addresses the question of which among the features, or 

combination of features, are fit for the repertoire recognition task and which are robust 

for the individual identification task.  

Chapter Four applies the HMM-based unsupervised clustering framework to 

assess beluga whale population structure, in order to determine the relationship between 

established beluga social groups as indicated by their vocalizations.  
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Chapter Five applies the proposed HMM-based framework to the tasks of 

supervised classification and unsupervised clustering to estimate the number of birds in a 

population.   

Chapter Six concludes the dissertation, summarizes the main contributions of the 

dissertation and underlines several potential future directions.  
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CHAPTER 2 

BACKGROUND AND RELATED WORKS 

 

2.1.  Introduction 

This chapter provides necessary background knowledge in the field of speech processing, 

machine learning, and bioacoustics. 

The three tasks in speech processing that are most closely associated with this 

research are speech recognition, speaker identification, and speaker diarization.  Section 

two in this chapter gives an overview of these areas, focusing on the use of hidden 

Markov models (HMMs), to determine word sequence from statistical measures of the 

similarity or dissimilarity between reference examples and test data.  In addition, the use 

of Gaussian mixture models (GMMs) for speaker recognition is explored. 

Section three presents model-based unsupervised clustering tasks and reviews two 

different clustering methods, namely, HMM-based k-model clustering and HMM-based 

hierarchical agglomerative clustering.  The section addresses methods to estimate the 

number of clusters K and to assess the clustering results as well.  

Section four focuses on feature extraction approaches such as Greenwood 

function cepstral coefficients, pitch tracking, delta and acceleration computation and 

some cepstral normalizations.  

Section five gives an overview of bioacoustics by addressing the tasks associated 

with call-type recognition, individual animal identification, and animal abundance 

estimation, using approaches such as cross-correlation, dynamic time warping and self-

organizing map (SOM).  Section six concludes the discussion with a short summary.  
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2.2. Automatic speech and speaker recognition, and speaker diarization 

The term automatic speech recognition refers to methods for developing and 

implementing algorithms on a computer in order to recognize the linguistic content of a 

spoken utterance. Speaker recognition refers to method for identifying the person who 

speaks the utterance (Lee et al., 1996).  Speaker diarization is the task of marking and 

categorizing the speakers within a spoken document (Tranter and Reynolds, 2006).  

In recent decades research in the field of automatic speech processing has made 

significant improvement due to the advances in signal processing, algorithms, 

architecture, and hardware.  These includes the adoption of a statistical pattern 

recognition paradigm to analyze the problem, the use of the hidden Markov modeling 

framework to characterize both temporal and spectral variations in the speech signal, and 

the use of dynamic programming based search methods to find the best word sequence in 

the lexical network that corresponds to the spoken utterance. 

Speech processing systems have been developed for a wide variety of 

applications, ranging from small vocabulary keyword recognition over dial-up line to 

large vocabulary speech dictation and spontaneous speech understanding.  The following 

is a brief description each of the task: automatic speech recognition, speaker recognition, 

and speaker diarization.  

 

2.2.1. Automatic speech recognition 

The speech signal is a complex signal that is not easy to process. The physical production 

system of speech signals differs from one person to another. The observed time-series 
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signal is different for every utterance, even when produced by the same person and even 

for multiple utterances with the same sequence of words.  There are ranges of plausible 

variants of each speech sound, some which are more likely than others. The extent and 

type of possible variation, both in time scale and in frequency spectrum, will be different 

for different sounds. In addition to the vast differences across different speakers, the 

speech signal is influenced by the transducer used to capture the signal, the channel used 

to transmit the signal, and the speaking environment that can add noise or change the way 

the signal is produced in a noisy environment (Rabiner et al., 1996).  

Automatic speech recognition (ASR) by machine is difficult is due to inherent 

signal variabilities. There are at least four types of variability in speech signals (Zue et 

al., 1997).  First, phonetic variability, in that the acoustic realizations of phonemes (the 

smallest sound units of which word are composed) are highly dependent on the context in 

which they appear. Second, acoustic variability can result from changes in the 

environment as well as in the position and characteristics of the transducer. Third, within-

speaker variabilities can result from changes in the speaker’s physical and emotional 

state, speaking rate, or voice quality. Finally, differences in linguistic background, 

dialect, vocal tract size and shape can contribute to across-speaker variabilities.  

Speech recognition systems attempt to model the sources of variability described 

above in several ways. At the level of signal representation, researchers have developed 

representations that emphasize perceptually important speaker-independent features of 

the signal and de-emphasize speaker dependent characteristics. At the acoustic-phonetic 

level, speaker variability is modeled using statistical techniques applied to large amounts 

of data. Effects of linguistic context at the acoustic phonetic level are typically handled 
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by training separate models for phonemes in different contexts (referred to as context-

dependent acoustic modeling). Word level variability can be handled by allowing 

alternate pronunciations of words in representations known as pronunciations networks.  

A successful approach to automatic speech recognition is to treat the speech 

signal as a stochastic pattern and to analyze the signal using statistical pattern 

recognition.  Speech recognition systems treat the acoustic input as if it were a noisy 

version of the source sentence.  In order to decode this noisy sentence one needs to 

consider all possible sentences and to choose one which has the highest probability of 

generating the sentence. Speech recognition is therefore formulated as a maximum a 

posteriori (MAP) decoding problem (Jelinek, 1998). 

The noisy channel in Figure 2.1 is a model that jointly characterizes the speech 

production system, the speaker variability, and the speaking environment. 

 

Figure 2.1. Source-channel model of speech recognition (after Jelinek, 1998) 

 

To simplify the problem, in general the speech signal S is first parametrically 

represented as a sequence of acoustic vectors X.  Let W = w1, w2, … wn, where wi ∈ V 

denotes a string of n words, each belonging to a fixed and known vocabulary V. 

The decoding problem of speech recognition systems are defined as 

Acoustic channel 
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 ˆ W  = argmaxW∈V P(W|X).     (2.1) 

The recognizer will pick the most likely word W given the observed acoustic X.  Bayes’ 

formula allows us to write the right-hand side probability of equation (2.1) as 
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where P(X|W) is the conditional probability of the acoustic vector sequence X, given a 

particular sequence of word W, P(W) is the a priori probability of generating the 

sequence of word W; and P(X) is the average probability that X will be observed.  Since 

equation (2.2) maximizes over all possible words, one has to compute P(X|W)P(W)/P(X) 

for each word in the vocabulary. P(X), however, doesn’t change for each word. For each 

potential word one still examines the same observation A which have the same 

probability P(X). Equation (2.1) and (2.2), therefore, can be simplified as follows 
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Thus, the most probable word W given some observation sequence X can be 

computed by taking the product of two probabilities for each word, and choosing the 

word for which this product is greatest.  The first term P(X|W), the observation 

likelihood, is often referred to as an acoustic model; and the second term P(W), the prior 

probability, is known as a language model.  
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2.2.1.1. Principles of speech recognition 

Figure 2.2 shows the basic structure of an automatic speech recognition system. 

 

 

 

 

 

 

Figure 2.2.  Block diagram of call-type recognition, classification (after Rabiner, 1996) 

 

Feature analysis provides the acoustic feature vectors of the input signal.  The 

acoustic word match component determines which words are most likely spoken by 

evaluating the similarity between input feature vectors and a set of acoustic word models 

for all words in the vocabulary.  The sentence-match uses a model of syntax and 

semantics (language model) to determine the most likely sequence of words.  

Recognition is made by considering all likely word sequences and choosing the one with 

the best acoustic matching score. 

 

Feature analysis 

The focus of feature analysis is to parameterize the speech into a sequence of feature 

vectors X that contains the relevant information about the sounds within the utterance.  

For speech, the analysis is typically done over a fixed length frame of analysis window. 

A window of length 30 ms and overlap 10 ms might be used as the input to feature 
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analysis. The analysis often includes short time spectral features that incorporate cepstral 

features along with its first and second time derivatives (Furui, 1986). Fourier analysis is 

still the most widely used method for extracting spectral features for speech recognition 

(Rabiner et al., 1996). Sometimes, non-uniform frequency scales are employed in 

spectral analysis to provide mel-frequency or bark-scale spectral feature sets. A full 

discussion of feature analysis will be presented in section four.  

 

Acoustic modeling 

As shown in equation (2.3), the system needs to be able to determine the value P(X|W) – 

the probability  of observation data X given a specific word sequence W. To compute 

P(X|W) one needs a statistical acoustic model of the speaker’s interaction with the 

acoustic processor.  The modeling process involves the way the speaker pronounces the 

word W, the microphone placement and the acoustic processing performed by the front 

end. 

The usual acoustic model employed in speech recognizers, hidden Markov 

models, will be discussed in the next section.  Other models are possible, for instance 

those based on artificial neural networks (Furui, 1981), or on dynamic time warping 

(Rabiner, Levinson, 1981). Speaker recognition systems often use a more direct statistical 

model of each speaker, the Gaussian mixture models.  

 

Language modeling  

Early ASR systems used only acoustic information to evaluate text hypotheses.  It was 

quickly found that by incorporating language knowledge significantly raised ASR 
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accuracy (O’Saughnessy, 2000).  The grammar or structure of permitted word sequence 

increases ASR accuracy by eliminating candidate word sequences that are not legal under 

the grammar (Seneff, 1992). 

Equation (2.3) is used to compute the probability of a complete string of words 

(represented either as w1, …wn).  If one considers each word occurring in its correct 

location as an independent event, one might represent the probability as follows 

 P(w1

n ) = P(w1)P(w2 | w1)P(w3 | w1

2)...P(wn | w1

n−1) 

  = P(wk | w1

k−1)
k=1

n

∏ .           (2.4) 

Equation (2.4) can be simplified using approximation of the probability of a word 

given all previous words.  The bigram model approximates the probability of the 

proceeding word by looking one word into the past P(wn | wn−1) .  One can generalize the 

bigram into the trigram (which looks two words into the past) and the N-gram (which 

looks N-1 words into the past) models. 

 

2.2.1.2. Hidden Markov Models 

The most widely used and the most successful modeling approach to speech recognition 

is the use of Hidden Markov Models (HMMs). The HMM is a statistical model that uses 

a finite number of states and associated state transitions to jointly model the temporal and 

spectral variation of signals. The time varying nature of spoken utterances is 

accommodated through an underlying Markov process. Statistical processes associated 

with the model states define output probability distributions and so encompass the 

variability which occurs both between and within speakers when producing equivalent 

speech sounds.  
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The following section offers an overview of HMMs and presents methods for 

evaluating, decoding and learning.  For more detail discussion on HMMs, the reader may 

refer to Rabiner (1989) and Rabiner, Juang (1993).  

 

HMM definition 

Let  S1, S2…., Sn be a sequence of random variables.  Bayes’ theorem results in 

 ∏
=

−=
n

i

iin SSSSPSSSP
1

12121 ),...,,|()...,( .    (2.5) 

The random variables form a Markov chain if )|(),...,,|( 1121 −− = iiii SSPSSSSP  for all 

value of i.  As a consequence, 
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The above random process thus incorporates a minimum amount of memory since the 

value at time t depends only on the value at the previous time.  Furthermore, the Markov 

chain is time invariant or homogenous if regardless of the value of the time index i 

 ijjj asspsSsSP ==== )|'()|'(  for all s′, s ∈S    (2.7) 

where aij is the transition function that satisfies the condition 

 1=∑
i

ija ,  0≥ija       (2.8) 

A Markov chain is a finite state process with transitions between states specified by the 

transition probabilities aij. 

A Markov chain is useful for computing the probability of a sequence of observed 

events.  In many cases, people are interested in events that are not observable.  In speech 

recognition, for example, one sees some acoustic events and has to infer the presence of 
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“hidden” words underlying a causal source of the events.  A hidden Markov model, is an 

extension of a Markov chain that deals with observed events and hidden events.  

An HMM represents a stochastic sequence where the states are not directly 

observed, but are associated with a probability density function (pdf).  Each HMM state j 

has an associated observation probability distribution bj(xt) that determines the 

probability of generating observation xt at time t.  Each pair of states i and j also has an 

associated transition probability aij.  In speech models the entry state 1 and the exit state 

N of an N states HMM are non-emitting, a modification which allows for easy connection 

between multiple HMM sequences.   

 

Figure 2.3.  A left-to-right HMM (after Young et al., 2002) 

 

Figure 2.3 shows a left-to-right HMM where a five states model moves through 

the state sequence S = 1, 2, 2, 3, 4, 4, 5 in order to generate the sequence x1 to x5. Three of 

the above states are emitting states and have an output probability distribution associated 

with them.  The transition matrix of this model has 5 rows and 5 columns, which might 

be as follows: 

x1 x2 x3 x4 x5 

b4(x5) b4(x4) b3(x3) b2(x2) b2(x1) 

a24 

a44 a33 a22 

a45 a34 a23 a12 1 5 2 3 4 
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Each row will sum to one except for the final row that is always all zero since no 

transitions are allowed out of the final state. 

The joint probability that X is generated by the HMM model M moving through 

the state sequence S is computed simply as the product of the transition probabilities and 

the output probabilities.  So for the state sequence S in figure 2.3 

 )...()()()|,( 332322221212 xbaxbaxbaMSXP =    (2.9) 

In this approach, only the observation sequence X is known and the underlying state 

sequence S is hidden.  It is, therefore, called a Hidden Markov Model.  

The sequence of states, which is the quantity of interest in speech recognition, can 

be observed only through the stochastic processes defined into each state.  One has to 

know the pdfs of each state before being able to associate a likely sequence of states S = 

{s1, …, sK} to a sequence of observations X = {x1, …, xK}.  

A hidden Markov model is defined by a set of parameters (Φ): 

• {s} – a set of states that include an initial state SI and a final state SF 

• {aij} – the probability of taking a transition from state i to state j 

• {bj(k)} – the probability of emitting output k while in state j.  

a and b  satisfy the following properties: 

aij ≥ 0, bij(k) ≥ 0, ∀i,j,k 

∑ ∀=
j

ij ia ,1  
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∑ ∀=
k

j jkb ,1)(  

There are two assumptions in a first-order hidden Markov model. The first is the 

Markov assumption equation (2.6). The second assumption is the output-independence 

assumption. It states that the probability that a particular symbol will be emitted at time t 

depends only on the transition taken at that time (from state st to st+1), and is conditionally 

independent of the past. 

Given the basic structure of the HMM above, there are three fundamental 

problems to address; the evaluation problem, the decoding problem and the learning 

problem (Rabiner, 1989).   

1. The evaluation problem: 

Given an HMM model and a sequence of observation data, determine the likelihood 

that the model generates the observation. 

2. The decoding problem: 

Given a model and an observation sequence, discover the most likely hidden state 

sequence in the model that generates the observation 

3. The learning problem: 

Given a set of observations and a model, learn the HMM parameters.  

 

The evaluation problem – the forward and backward algorithm 

The evaluation problem focuses on calculation of the probability of the observation 

sequence X = (X1, X2, … XT), given the HMM Φ, namely, P(X|Φ).  The intuitive way to 

calculate the probability P(X|Φ) is to sum up the probabilities of all possible state 

sequence of length T 
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The enumeration of every possible state sequence is computationally expensive 

with time complexity of O(N
T
), where N is number of states and T is number of 

observation.   However, one can compute P(X|Φ) in a recursive way using a dynamic 

programming approach, called the forward recursion method.  Based on the first order 

Markov assumption, it is possible to compute the likelihood P(X|Φ) recursively with time 

complexity O(N
2
T).    

To do this the forward algorithm defines a forward variable αt(i) corresponding to 

 

 )|,()( 1 Φ== isXPi t

t

tα ,     (2.11) 

the probability of having observed the partial  sequence tX1 (namely, x1, x2, …xt) and 

being in state i at time t given the parameter Φ.   

For an HMM with N number of states, where states 1 and N are the non-emitting 

initial and final states, αt(i) can be computed recursively as follows: 

 

1. Initialization 

)()( 111 xbai ii=α  1≤ i ≤ N 

2. Recursion 
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3. Termination 
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The forward algorithm employs a dynamic programming approach by using a 

table to store intermediate values as it computes the probability of the observation 

sequence.  

 

  Figure 2.4. The computation of forward variable αt(j) 

 

Each αt(j) represents the probability of being in state j after seeing the first t observation.  

The value of αt(j) is computed by summing over the probabilities of every path that could 

lead to this cell.  

The backward probability is defined in a similar manner to the forward 

probability as 

 ),|()( 1 Φ== + isXPi t

T
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where )(itβ  is the probability of generating partial observation T

tX 1+  (from t+1 to T) 

given that the HMM is in state i at time t.  Similar to forward probabilityα,  β can be 

computed with recursion on t as follows: 

 

• 
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1. Initialization 

1)( =iTβ ;  1≤ i ≤ N 

 

2. Recursion 

∑
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3. Termination 
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where πi is the starting probability. 

 

The decoding problem – the Viterbi algorithm 

The forward algorithm computes the probability that an HMM generates an observation 

sequence by summing up the probabilities of all possible paths.  However, it does not 

provide a state sequence.  In many applications such as a speech recognition application, 

it is useful to associate an “optimal” sequence of states to a sequence of observations, 

given the parameters of a model.  A reasonable optimality criterion is to choose the state 

sequence or path that has a maximum likelihood with respect to a given model.  In other 

words, given an observation sequence X = (X1, X2, … XT), one is looking for the state 

sequence S = (s1, s2, … sT) that maximizes P(S, X|Φ).  This sequence can be determined 

recursively via the Viterbi algorithm.   

The Viterbi algorithm make use of two variables, δt(i) and ψt(i).  δt(i) is the 

highest likelihood value along a single path among all the paths ending in state i at time t: 
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Meanwhile, ψt(i) is a variable to keep track of the best path ending in state i at time t: 
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δt(i) is similar to the forward recursion αt(i), only with respect to a single state sequence, 

and its computation is nearly identical. 

For an HMM with N states, the procedure to find the best state sequence is as 

follows: 

1. Initialization 
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Given an observation sequence X = {x1, .. xT} and a model parameter Φ, the 

Viterbi algorithm delivers two useful results, namely the selection of the best path among 

all the possible paths in the considered model, S* = {S1*, …ST*}, and the likelihood 

along the best path ).|()|*,( Φ=Φ XPSXP   

 

The learning problem: the Baum-Welch algorithm 

The learning problem involves the optimization of the model parameters Φ = (A, B,π) to 

obtain the best model to represent a certain set of observations.  The learning problem can 

be approached using an iterative procedure, the Baum-Welch algorithm. 

 

Key aspect of estimating the model parameters is calculating state occupancy 

probabilities. Define γt(i) - the probability of being in state Si at time t, given the 

observation sequence X and the model Φ - as follows: 

 

 ),|()( Φ== XSsPi ittγ     (2.15) 

 

Equation (2.15) can be expressed in terms of the forward-backward variables as 
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Also define another probability function ξt(i,j), the probability of being in state Si at time t 

and going to state Sj at time t+1, given the model Φ and observation sequence X as 

follows:   

 ),|,(),( 1 Φ=== + XSsSsPji jtittξ    (2.17) 

From the definition of the forward and backward variables, the above equation can be 

written in the form 
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The relationship between γt(i) and ξt(i,j) can be shown by summing over j, giving 
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Summing γt(i) over all instances and excludes the time t=T, one gets the expected number 

of times that state Si is visited.  Summing ξt(i,j) over t and excluding t=T, one obtains the 

expected number of transitions from state Si to state Sj.  The re-estimation of the model 

parameters, then, proceeds as follows: 

 iπ̂  = expected number of times in state Si at time (t = 1) = γ1(i)  (2.20) 

      expected number of transitions from state Si to Sj 
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      expected number of times in state j and observing xk 

 jb̂ (k) = 

      expected number of times in state j 
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After the re-estimation of the model parameters, a new model Φ̂ which is more likely to 

generate observation sequence X than model Φ is obtained.  This means that 

)|()ˆ|( Φ>Φ XPXP .  The re-estimation process continues until it converges.   

The Baum-Welch algorithm described above is an implementation of the general 

EM algorithm.  Beginning with some initial estimate of the HMM parameters Φ = (A, B, 

π) the E (expectation) step and M (maximization) step are run alternately.  In the E-step 

one computes the expected state occupancy count γ and the expected state transition 

count ξ from the earlier A and B probabilities using the forward-backward algorithm.  In 

the M-step γ and ξ are used to recompute new A, B, and π probabilities using equations 

2.20, 2.21 and 2.22.   

 

2.2.2. Automatic speaker recognition  

Speech contains many characteristics specific to each individual. These characteristics 

are mostly independent of the utterance and its linguistic message.  Each utterance from 

an individual is produced by the same vocal tract. It tends to have a typical pitch range 

and a characteristic articulator movement associated with dialect or gender.  These 

indicate that the speech is highly correlated with the particular individual who is 
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speaking.  Listeners, therefore, are often able to recognize speaker identity fairly quickly, 

even over the telephone (Gold, Morgan, 2000). 

 Speaker recognition by computer is the task of recognizing automatically who is 

speaking based upon information obtained from speech signals. Applicable speaker 

recognition services include voice dialing, banking over a telephone network, telephone 

shopping, database access services, information and reservation services, forensic 

application and voice login  (O’Saughnessy, 2000). 

 Speaker recognition includes two important tasks: speaker identification and 

speaker verification.  Speaker identification focuses on determining from which of the 

registered speakers a given utterance comes. Speaker verification, also known as speaker 

authentication is the binary classification task to accept or to reject the identity claim of a 

speaker.  The difference between speaker identification and speaker verification is in the 

number of decision alternatives.  In identification the number of decisions is equal to the 

size of population; whereas in verification there are only two decisions, accept or reject, 

regardless the population size.   

            Speaker recognition can be either text-dependent or text-independent utterances, 

depending on whether or not the recognition process is constrained to a predefined text or 

not. 

 This section gives an overview of the tasks and basic structure of speaker 

recognition systems. For more detail reviews, the reader is referred to papers by 

Campbell (1997) and Furui (1996). 
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2.2.2.1. Principles of speaker recognition 

Figures 2.5 and 2.6 show the structure of a typical speaker recognition system 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Basic structure of speaker identification system (after Furui, 1996) 

 

 

 

 

 

 

Figure 2.6. Basic structure of speaker verification system (after Reynolds, 2002) 
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 In speaker identification, a speech signal from an unknown speaker is analyzed. 

The system then computes the similarity of the unknown speaker with models of known 

speakers.  The input is identified as the speaker whose model best matches the input 

signal. 

 A speaker verification system implements a likelihood ratio test to discriminate 

between two hypotheses: the test speech comes from the claimed speaker or from 

imposter (non-claimed speaker).  Features extracted from the input signal are compared 

to a model representing the claimed speaker obtained from a previous enrolment and to 

some models representing potential imposter speakers.  The match score is then 

compared to a threshold to decide whether to accept or to reject the speaker.   

 The section below describes the architectural components of a speaker recognition 

system. 

 

Feature extraction 

In contrast with speech recognition, speaker recognition benefits from the features that 

are independent of the particular spoken words.  Such characteristics include the average 

range of fundamental frequency or the overall properties of the spectral envelope (such as 

the average formant position over many vowels).  In general, speaker recognition features 

are typically based on some kind of short-term spectral measure as they are in automatic 

speech recognition.  
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Speaker model 

A speaker model is created during enrollment using feature vectors extracted from the 

input signals.  There are at least three desirable characteristics of a speaker model 

(Reynolds, 2002), namely, (a) has a theoretical explanation so one can understand model 

behavior; (b) generalizable to new data so that the model can match to new data; (c) 

concise representation in both size and computation. 

 There are several modeling approach used in speaker recognition systems, 

including neural network, template matching, Gaussian mixture models (GMMs) and 

hidden Markov models (HMMs).   

 In the neural network approach the speaker model can have many forms such as 

multi-layer perceptrons or radial basis function.  The models are explicitly trained to 

discriminate between the speaker being modeled and alternative speakers.   

 In HMMs, the method models the temporal evolution and statistical variation of 

the features.  It provides the statistical representation of how a speaker produces sounds.  

A speaker model can be represented as GMMs.  Conceptually, the GMM is similar to 

HMM, except that the GMM does not account for temporal ordering of feature vectors 

(Quatieri, 2001).  

 

Impostor model 

The use of impostor modeling is a normalization to minimize non speaker related 

variability (e.g., text, microphone, noise…) in the likelihood ratio score.  There are two 

approaches to represent impostor model.  The first, known as likelihood sets, cohorts or 

background sets, uses a collection of other speaker models to compute the impostor 
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match score.  It is usually a function of the match scores from a set of non-claimant 

speaker models.  These non-claimant models can come from other enrolled speakers or as 

fixed models from a different corpus.  

 The second approach, referred to as general or universal background modeling, 

uses a single speaker-independent model trained on speech from a large number of 

speakers to represent speaker-independent speech.  The approach represents impostors 

using a general speech model that is compared to a speaker-specific speaker model.  The 

advantage of this approach is that only a single impostor model needs to be trained and 

scored.  

 

Similarity measure (Bourlard, Morgan, 1998) 

As mentioned in the previous section, speaker verification is a form of hypothesis test.  A 

likelihood ratio test is used to discriminate the test speech comes from a claimed speaker 

or impostor.  The system will verify the hypothesis that speaker Si is indeed the presumed 

speaker Sc if 

 )|()|( XSPXSP cc >      (2.23) 

where )|( XSP c is the probability of the speaker is being anyone except Sc. 

 With some threshold δ, equation (2.23) can be expressed as  
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with δ > 1.  

 Using logarithm of the likelihood ratio, the above equation becomes 

 



 

 

32 

 S=Sc, if   log )|( cSXP - log )|( cSXP > ∆   (2.25) 

where ∆ = log δ. 

 Equation (2.25) states that the identity of Sc is accepted/validated when the 

difference is above threshold.  Otherwise, it is rejected. 

For a detailed discussion on some main speaker recognition approaches such as 

text-dependent, text independent and text-prompted speaker recognition, we refer the 

reader to Gold and Morgan (2000). 

 

2.2.2.2. Gaussian Mixture Models (GMMs) 

As mentioned in the previous section, current studies in automatic speech recognition 

treat speech signal as stochastic patterns and analyze signal using statistical pattern 

recognition.  Speech signal is observed as random variables that often have distribution 

following Gaussian distribution referred to as normal distribution.  A continuous random 

variable X is said to follow Gaussian distribution if X has a probability density function 

pdf in the form 
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This normal distribution is specified by two parameters: mean µ and variance σ2
 where σ 

> 0 and sometimes denoted as N(µ,σ2
). 

For the n-dimensional continuous random vector X = (X1, …, Xn) the multivariate 

Gaussian pdf is: 
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where µµµµ is an n-dimensional mean vector with  µµµµ = E(x),  ∑∑∑∑ is the n×n covariance matrix  

∑∑∑∑ = E[(x - µµµµ)( x - µµµµ)
t
], and |∑∑∑∑| is the determinant of the covariance matrix ∑∑∑∑.  The 

covariance matrix ∑∑∑∑ has the i-j
th

 element σij
2
 is as follows 

 )])([(2

jjiiij xxE µµσ −−=      (2.28) 

In more complex distributions, random variables can be approximated using 

Gaussian mixtures as follows 

 f(X=x|µµµµ, ∑∑∑∑) = ∑
=

M

m

mmmmNw
1

);( Σµx     (2.29) 

where wm is the mixture weight associated with m-th Gaussian component. This weight 

has the following constraints: wm ≥ 0 and ∑ =

M

m mw
1

= 1.  

A Gaussian mixture model (GMM), given an adequate number of mixture, has 

been shown to be able to model any arbitrary continuous pdf (Duda, et al., 2001). This 

study employs GMMs for unsupervised individual animal clustering task. The parameters 

for the GMM, µµµµm and ∑∑∑∑m and wm, are estimated using standard Baum-Welch estimation 

algorithm.  

 

2.2.3. Automatic speaker diarization 

Audio diarization is a task of marking and categorizing the audio sources within a spoken 

document (Tranter, Reynolds, 2006).  The audio sources may consist of music segments, 

various speakers, noise sources, and other signal source/channel characteristics.  Most 

current audio diarization research focuses on speaker diarization to identify who is 

speaking and when.  This is a task of speaker segmentation and clustering. 
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 Three domains which have been used for speaker diarization include broadcast 

news audio (Tranter, Reynolds, 2004; Meignier et al., 2006), recorded meetings (Pardo et 

al., 2007), and telephone conversations (NIST, 2006).  

 Based on Tranter and Reynolds (2006), this section introduces the current speaker 

diarization framework and describes each of the tasks included in the system. 

 

2.2.3.1. Principles of speaker diarization 

Figure 2.7 presents a block diagram of a speaker diarization system.  Typically the 

framework consists of tasks to perform speech detection, gender and/or bandwidth 

segmentation, speaker segmentation, and final boundary refinement.  

Figure 2.7.  A speaker diarization system (after Tranter and Reynolds, 2006) 
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Speech detection 

The purpose of speech detection is to find the speech regions present in the audio data.  

The task starts with building speech and non-speech models using Gaussian mixture 

models (GMMs) or hidden Markov models (HMMs) trained on labeled data. A Viterbi 

segmentation is employed to identify unknown speech regions.  At this stage, regions that 

are of no interest for the final output may be automatically detected and removed.  

 

Change detection 

Change detection tries to find points which are likely to be change points between audio 

sources.  In the un-segmented audio data, the change detection looks for change points of 

both speaker and speech/non-speech.  The method involves processes of looking at 

adjacent windows of data, calculating a distance metric between the two windows, and 

deciding whether the windows come from a different or the same source.  

 

Gender/bandwidth classification 

In order to reduce the load of clustering, to give more parameter flexibility, and to 

provide more information about the speaker, the gender/bandwidth step classifies the 

segments into gender (male-female) segments and bandwidth segments where low-

bandwidth represents narrow band/telephone and high-bandwidth represents studio data.  

 The classification is a supervised task utilizing maximum likelihood with GMMs 

or HMMs trained on labeled data.  
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Clustering 

The goal of the clustering stage is to associate together segments of the same speakers.  

Ideally, the process results in one cluster for each speaker and segments from a given 

speaker for one cluster. 

 A typical clustering method utilized in speaker diarization is hierarchical 

agglomerative clustering with a Bayesian information criterion (BIC) (Chen, 

Gopalakhrisnan, 1998), widely used in statistics; or a modification of BIC (Pardo et al., 

2007) as a stopping criterion.  

 The clustering stage consists of the following steps: 

1. Create cluster initializations using speech segments 

2. Compute pair-wise distances between clusters 

3. Merge closest clusters 

4. Update distances of remaining clusters to new cluster 

5. Repeat steps 2-4 until stopping criterion is met.  

 

Cluster recombination 

Cluster recombination runs clustering to create smaller clusters of the audio data.  The 

method builds a universal background model (UBM) utilizing training data to represent 

general speakers.  In order to form a single model for each cluster, maximum a posteriori 

(MAP) adaptation is applied on each cluster from the UBM.  The method then defines the 

cross-likelihood ratio (CLR) (Barras et al., 2004) as follows: 
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where L(xi|λj) is the average likelihood per frame of data xi given model λj.  A new model 

is created from the merged of the pair clusters with the highest CLR.  The process is 

repeated until the CLR reaches below the predefined threshold.  

 

Resegmentation 

The goal of this final step is to refine the original segment boundaries and to fill in short 

segments that have been removed during the clustering steps.  This post-processing step 

is done utilizing Viterbi decoding, using final cluster models and non-speech models.  
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2.3. Unsupervised clustering with HMMs 

This section presents model-based clustering using likelihood feature space.  It addresses 

the problem of clustering using HMMs and reviews two different clustering methods: 

HMM-based k-model clustering and HMM-based hierarchical agglomerative clustering. 

The approach extends those methods by adding techniques to estimate the number of 

clusters K, and to assess the clustering results.   

Unsupervised clustering deals with the task of learning without supervision a 

natural or appropriate way of dividing a data set into groups. The goal is to assign labels 

to a data set in a way that maximizes the similarity among items in the same cluster and 

minimizes the similarity between items in different clusters. 

It is known that unsupervised clustering is a more challenging task than 

supervised classification.  In supervised classification the system can be trained 

adequately using classes or labels that are already identified.   

The unsupervised clustering of acoustic waveforms based on their similarity is 

becoming important in animal vocalization analysis and in human speech tasks. Recent 

work in animal vocalization analysis includes the use of a self organizing map (SOM) to 

analyze the syllables of bird song (Somervou, Harma, 2003) and to associate the specific 

information content of the prairie dog vocalizations (Placer et al., 2006), the use of 

HMMs for beluga whale and elephant vocalizations clustering (Clemins, 2005). In human 

speech tasks, meanwhile, the work has included the effort in speaker indexing based on 

utterance segmentation and speaker clustering (Nishida, Kawahara, 2003), labeling 

speaker turns by segmenting and clustering a continuous audio stream (Johnson, 1999), 
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speaker segmentation and clustering in meetings (Qin Jin et al., 2004) and speaker 

diarization (Pardo et al., 2007; Tranter, Reynolds, 2006). 

Clustering sequential data such as acoustic waveforms is a difficult subject.  Often 

there is no natural distance function between sequential data.  These cannot be expressed 

efficiently as points in a finite dimensional vector space.  The structure of an underlying 

process at work within data is often difficult to infer, and typically one has to deal with 

sequences of different length (Bicego et al., 2003). 

Sequential data clustering is generally classified into discriminative (proximity-

based) and generative (model-based) approaches (Bicego et al., 2003; Ghosh 2003).  A 

discriminative approach assumes that the data exist in a space where any pair of data has 

a well-defined distance or similarity measure.  For numeric sequences such as time series, 

for example, there are possible ways of measuring similarity such as normalization 

transformation (Goldin, Kannelakis, 1995), dynamic time warping (Berndt and Clifford, 

1996), and the longest common subsequence similarity (LCSS) measure. For a more 

detailed discussion on similarity measure in time series, the reader may refer to Das and 

Gunopulos (2003). 

Generative (model-based) approaches, on the other hand, assume that the 

sequential data belonging to the various clusters have been generated by a probabilistic 

pattern generation process.  A model-based clustering tries to make the best estimate of 

the parameters and then obtains the data cluster models using these estimates.   Parameter 

estimation can be done using Maximum Likelihood (ML), Maximum Aposteriori (MAP) 

or Mean Posterior (MP) computation (Ghosh, 2003).  
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The type of models in the generative method is often specified a priori, such as 

Gaussian mixture models (GMM) or Hidden Markov Models (HMMs).  The model 

structure (e.g, number of Gaussians in a mixture of a Gaussian model, or number of states 

in an HMM) can be determined using model selection approaches (Li, Biswas 2000; 

Biernacki et al., 2000) and the parameters are estimated using an EM algorithm that 

optimizes a likelihood criterion.  Given the complexity of constructing feature vectors for 

sequential data such as acoustic data, generative model-based clustering that involve 

Hidden Markov Models are naturally fit (Smyth, 1997; Cadez et al., 2000; Pannucio et 

al., 2002; Zhong, 2003).  

 

2.3.1. HMM-based k-model clustering 

As discussed in the previous section, HMMs employed to represent each of the different 

clusters are statistical models that use a finite number of states and the associated state 

transition to jointly model the temporal and spectral variations of repertoires.  They have 

been used extensively to model fundamental speech units in speech recognition because 

they can adequately characterize both the temporal and spectral varying nature of the 

speech signals (Rabiner, Juang, 1993; Rabiner, 1989). 

Smyth and Cadez (Smyth, 1997; Cadez et al., 2000) suggested the use of HMMs 

in clustering by utilizing two steps,  first defining pairwise distances using the log-

likelihood values to cluster the sequences into K groups, and then fitting K HMMs one to 

each group.  Following this, the method refines the initial estimate using a Baum-Welch 

procedure.  The best number of clusters K is then selected using a Monte-Carlo cross-

validation approach.  
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The assumption underlying an HMM-based method of clustering is that all of the 

data that belong to a cluster is generated by the same HMM, and as such, have high 

probability under this HMM.  If a vocalization has a high probability under an HMM 

model, it is considered to be generated or accepted by the model (Oates et al., 1999). 

The algorithm used for HMM-based k-models clustering is “hard clustering”, 

meaning that on each iteration every vocalization data is assigned to a single cluster 

represented by an HMM.  The HMM parameter updates are influenced only by data items 

currently in the associated clusters.  The benefits of this approach are twofold (Butler, 

2003): each training iteration involves processing of each vocalization only once.  The 

method performs only N instances of the Baum-Welch training procedure per cycle.   

Moreover, the expected number of cycles is smaller because cluster membership tends to 

change by large jumps and then to settle to a static configuration once parameter changes 

become sufficiently small and leading to a rapid convergence.  

The standard k-means clustering approach is straightforward.  How many clusters 

are being sought, the k parameter, is specified in advance.  Then k points are chosen at 

random as cluster centers.  Data instances are assigned to their closest cluster center 

according to some distance metric.  The centroids of all instances in each cluster are 

calculated.  These centroids are assigned to be the new center values for their respective 

clusters.  Finally the whole process is repeated with the new cluster centers, until a 

convergence criterion is reached.  

The HMM-based k-models algorithm is a generalization of the above standard k-

means, with the cluster centroid vectors being replaced by probabilistic models. The 

criterion to re-assign data to clusters is maximization of the likelihood of the data points.  
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The re-assignment of the data employs a Viterbi algorithm.  The computation of clusters 

is done by re-estimation of the model parameters using the Baum-Welch re-estimation 

algorithm (Knab et al., 2003).   

Given a set of data D = {X1, X2, … Xn} and a fixed integer K <<n, HMM-based k-

models algorithm computes a partition C = {C1, C2, … CK} of D and finds HMMs λ1, λ2, 

… λK as to maximize the objective function 

 ∏ ∏
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XLCf
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)|()( λ     (2.31) 

In equation (2.30)  L(Xi|λk) denotes the likelihood function, namely, the probability 

density of the generating repertoire Xi by model λk. Therefore, 

 )|()|( kiki XpXL λλ =     (2.32) 

The problem of computing a k-model clustering, then, can be formulated as a joint 

likelihood maximization problem (Knab et al., 2003; Cadez et al., 2000). 

 

Assume that the number of estimated cluster K is known. Given K initial HMMs 

0

1λ , 0

2λ , . . ., 0

Kλ , the k-models clustering algorithm can be summarized as follows: 

 

Algorithm : the k-models clustering algorithm 

Input  : estimated cluster K, K initial HMMs 

Output  : K HMMs clusters 

Steps  : 

1. Iteration t∈ 1, 2, … 

o Data assignment:  
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for each repertoire data Xi, assign data to the model of maximum 

likelihood, namely )|( 1−t

kiXL λ  is maximal 

o Model estimation: 

calculate new parameters of t

1λ , t

2λ , . . ., t

Kλ using data assigned to the 

models and using previous parameters 1

1

−tλ , 1

2

−tλ , . . ., 1−t

Kλ   

2. Termination: 

Terminate if no labels have changed or a given iteration number is 

reached.  

 

2.3.2. HMM-based hierarchical agglomerative clustering 

In the above partitional clustering approach, the number of clusters k is specified in 

advanced.  This number, however, is often unknown.  Additionally, it is sometimes 

preferable to have a method that returns a hierarchical structure of the data objects.  

Hierarchical clustering methods provide such a structure, creating a hierarchical 

decomposition of the given data objects and displaying the result via tree diagrams or 

dendrograms as shown in Figure 2.7.  At the leaves of the dendrogram, each object is a 

cluster by itself.  The height where two clusters are merged signifies the distance between 

these two clusters. 
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Figure 2.8.  Hierarchical clustering 

 

The dendrogram can be bottom-up or top-down.  The bottom-up approach, called 

the agglomerative method, starts with each data object as a distinct cluster.  The clusters, 

that are closest according to a specific distance measure are successively merged until a 

termination condition is satisfied.  Most agglomerative clustering approaches use  

variants of single-link, complete-link and average-link distances, which differ in the way 

to characterize the similarity or distance between a pair of clusters.  In single-link the 

distance between two clusters is the minimum of the distances between all pairs of the 

data drawn from two clusters.  In complete-link it is the maximum of all pair-wise 

distance between data objects in the clusters.  Meanwhile, average-link uses an average 

among all pairs as its distance metric (Jain et al., 1999).   
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The top-down approach, called the divisive method, begins with all data in a 

single cluster then performs splitting into smaller clusters according to some measures 

until a stopping criterion is met. 

Due to high computational complexity, some researchers, Ajmera et al., (2002), 

Ajmera, Wooters (2003) for instance, have tried to increase efficiency by building model-

based hierarchical clustering from the results of partitional clustering.  Data objects are 

first clustered into K0 groups, greater than the expected final K, using a partitional method 

such as k-models algorithm.  The hierarchical agglomerative clustering starts from K0 and 

iteratively merges the two closest clusters until all data objects are in one cluster.  The 

method returns a series of nested structure that can be further analyzed using some 

optimization criteria.  

To design model-based hierarchical clustering algorithms, it is necessary to define 

a distance measure between clusters (i.e., models) and then iteratively merge the closest 

pair of clusters.  Usually clusters are chosen such that merging them results in the largest 

log-likelihood log P(X|Λ).  The distance is defined as 

  

D
W

(λk, λj) = log P(X|Λbefore) - log P(X|Λafter)    (2.33) 

where Λbefore  and Λafter are the set of parameters before and after merging two models (λk 

and λj), respectively.  The distance computation in equation (2.33) is not efficient since to 

find the closest pair one needs to train a merged model for every pair of clusters and then 

evaluate the resulting log-likelihood.   
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In practice, the Kullback-Leibler (KL) distance measure has been commonly used 

(Ziad Rached et al., 2004).  An empirical KL divergence between two models λk and λj , 

is defined as 

 D
K
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where Xk is the set of data objects being grouped into cluster k.  This distance can be 

made symmetric by defining (Juang and Rabiner, 1985) 
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Zhong (2003) proposed some adaptations related to single-link, complete-link and 

boundary density as follows.  Corresponding to single-link, a minKL distance is defined 

as 

 ))|(log)|((logmin),( jk
Xkx

jk

m
xpxpD λλλλ −=

∈
   (2.36) 

and corresponding to complete-link, maxKL distance is defined as 
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To characterize high boundary density between two clusters for building 

complex-shape clusters, Zhong suggested a boundaryKL distance measure 

 D
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(λk, λj) = ∑
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where Bk is η fraction of Xk  (one can set η around 10%) that have smallest  log p(x|λk) – 

log p(x|λj) values.  A value of 0 for log p(x|λk) – log p(x|λj) defines the “boundary” 

between cluster k and j.     
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The algorithm for HMM-based hierarchical agglomerative clustering is as 

follows: 

Algorithm : HMM-based hierarchical agglomerative clustering 

Input : A set of N data objects X = {x1, … xN}, model structure λ and the 

depth of hierarchy K0 

Output : An K0  level cluster (model) hierarchy and hierarchical partition 

of the data objects, with k clusters at the k-th level. 

Steps: 

1. Partitional clustering: partition data objects into K0 clusters using HMM-

based partitional clustering.  

2. Distance calculation: compute pairwise inter-cluster distances using an 

appropriate measure (equation 2.34-2.37) 

3. Cluster merging: merge two closest clusters and re-estimate a model from 

the merged data objects Xk = Xk ∪ Xj, i.e., 

∑ ∈
=

kXxk xp )|(logmaxarg λλ λ  

4. Stop if all data objects have been merged into one cluster, otherwise go 

back to step 2. 

 

2.3.3. Estimating number of clusters in the data set 

A major challenge in cluster analysis is to estimate the optimal number of clusters in the 

data set.  A comprehensive survey of approaches to estimate the number of clusters is 

given by Milligan and Cooper (1985).  This section addresses two method of estimating 
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the number of clusters, namely, dissimilarity analysis and deltaBIC analysis.  The 

following are brief descriptions of each method. 

 

Dissimilarity analysis 

This section introduces the clustering distance method of Lange (Lange et al., 2004) that 

leads to a metric of dissimilarity. The number of clusters is then estimated from the cross-

data dissimilarity analysis. 

Let a data set D consist of n observations D = { X1, …, Xn}. Xi = {xi1, …xit} is an 

observation of length t composed of potentially multivariate feature vectors x.  The 

problem of clustering is to find a partition of the data set into k disjoint clusters.  A 

clustering algorithm Ak builds a solution L= Ak(D), where L = {L1, …Ln} is a vector of 

labels, and Li ∈ {1, … k} denotes the cluster label. Note that the algorithm Ak is not a 

classifier itself, but rather a software tool to establish a matching between a specific finite 

data set and associated cluster labels. 

Consider a comparison of solutions computed on two different data sets.  Let L1= 

Ak(D1) be defined with regard to a data set D1 and L2= Ak(D2) for data set D2.  The goal 

would be to compare two solutions L1 and L2 and to assess their similarity or 

dissimilarity.  They are, however, are not directly comparable since they come from 

different data sets.  To assess the distance of clustering solutions, Lange et al. devise a 

predicted label or classifier that renders the solutions comparable.  

In general, supervised classification generates a classifier function C that assigns 

an arbitrary observation from a designated feature space to one of k classes based on a 

labeled input data. A dataset D1 together with clustering solution L1 can be considered as 
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a training data set used to construct a generalized classifier function.  This classifier C 

trained from (D1, L1) predicts a new label L3= C(D2) for data set D2.  These labels L3= 

C(D2), then, can be compared to those generated by the clustering algorithms, that is, 

with L2= Ak(D2).  

Lange et al. define a measure of the distance of L3 and L2 using a normalized 

Hamming distance measure as follows: 
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where 1{L3i≠L2i}=1, if  L3i≠L2i and zero otherwise.  Equation (2.39), compares two sets of 

labels that are not necessarily in natural correspondence.  This measure quantifies the 

average distance of two clustering solutions.  This can be seen as a misclassification risk 

with respect to class labels produced by a clustering algorithm. 

One significant problem with this approach is the non-uniqueness of label 

representations. Two partitionings of a data set D2 might be structurally equivalent 

although the labelings L3 and L2 are differently represented. For instance, a cluster 

labeled 2 in the first solution might correspond to the one labeled 1 in the second 

solution, and vice versa.  This ambiguity poses a problem for validation.  

To overcome the non-uniqueness of representation, the label indices in one 

solution need to be optimally permuted so as to maximize the agreement between the two 

solutions under comparison.  The distance value, then, is modified as follows: 

 ∑
=

≠
∈

=
n

i
i

L
i

L
nk

PPk
d

1

)}
23

({1
1min

:),
3

( π
π2

LL     (2.40) 



 

 

50 

where Pk is the set of all permutations of the label elements.  Equation (2.40) quantifies 

the fraction of differently labeled points and can be regarded as the empirical 

misclassification risk of classifier C with respect to the clustering algorithm Ak.   

To use this concept of solution distance in a way that indicates overall 

dissimilarity value, we denote )( kADis as the average of )L,L( 23Pkd  obtained for r times of 

the split over the data D: 

 ∑ == r
i Pki

d
rk

ADis
1

)
2

,
3

(1)( LL     (2.41) 

Lange et al. refer to this metric as “stability”; however, since its value increases rather 

than decreases with distance between solutions, we here refer to it as a “dissimilarity” 

index of clustering solutions with regard to the distribution of the data. 

Applying this dissimilarity value to estimate the number of clusters in the data, 

equation (2.41) is normalized using the misclassification rate of a random labeling 

Dis(Rk) that assigns an observation to cluster v with probability 1/k: 
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k

k
k

RDis

ADis
AisD =     (2.42) 

The smaller the value of ( )
k

Dis A  ∈[0,1], the more similar are the solutions being 

compared. 

Using this approach to estimate the cluster number we have the following 

algorithm:  

Algorithm : Dissimilarity analysis to estimate number of clusters in a data set 

Input  : Data D, clustering algorithm Ak, number of split r, number of 

sample s 

Output  : Estimated number of clusters k̂  
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For each number of clusters k ∈ {kmin, …, kmax} perform the following steps 

1. Estimate )(ˆ
kAisD by averaging r splits of the data: 

a. Split the given data set into two halves D1, D2 and apply a clustering 

algorithm Ak to both 

b. Construct classifier C using D1 and its cluster labels L1 =Ak(D1); then 

compute L3= C(D2) 

c. Use equation (2.40) to calculate the distance of the two solutions L3= 

C(D2) and L2= Ak(D2) 

2. Sample s random k-labels, compare pairs of these, and compute the empirical 

average of the dissimilarities to estimate )(ˆ
k

RisD  

3. Normalize each )(ˆ
k

AisD  with )(ˆ
k

RisD  to get an estimate for )(
k

AisD  using 

equation (2.42) 

Return the estimated number of clusters )(minargˆ
k

AisD
k

k = . 

 

Delta BIC analysis 

In the context of automatic speaker clustering, Ajmera et al. (2002) present a similarity 

measure between two probability density functions estimated by Gaussian mixture 

models (GMMs).  Starting from over clustering – clustering the data into a number of 

clusters larger than the expected number of clusters – the method converges to a final 

clustering using an iterative merging and retraining process.  The process consists of 

training a GMM for each cluster, selecting the closest pair of clusters for merging, and 
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retraining the GMM of the merged cluster.  The similarity measure, referred to as 

deltaBIC is employed without the need for any threshold or penalty term.  The merging 

and retraining are repeated until no possible pair of clusters for merging is left.  

Let {D1} and {D2} be two data sets and θ1 and θ2 be the maximum likelihood 

estimates of the parameters of the PDF of {D1} and {D2} respectively.  In the case when 

the PDF is modeled by a Gaussian Mixture Model (GMM),  let θ1 and θ2 are parameters 

of GMMs having components M1 and M2 GMMs. A similarity or distance measure is 

required to decide if two clusters representing data sets {D1} and {D2} should be merged 

or not.  Letting θ to be a maximum likelihood estimate of the parameters of the PDF of 

data {D} = {D1} ∪ {D2}. Let θ be the parameter of a GMM having M = M1 + M2 

component, the distance measure or deltaBIC is calculated as 

 

 deltaBIC = ∑∑∑
∈∈∈

−−
21

)|(log)|(log)|(log 21

DXDXDX

XpXpXp θθθ .  (2.43) 

If deltaBIC is greater than 0 for a pair of clusters, those two clusters are believed to be 

similar enough to merge. The method finds and merges the cluster pair that gives the 

largest deltaBIC value.  

The algorithm to estimate number of clusters in a data set using deltaBIC as a 

stopping criterion is as follows. 

 

Algorithm : DeltaBIC analysis to estimate number of clusters in a data set 

Input  : Initial clusters I 

Output  : Number of clusters K 

Steps  : 
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1. Start by over-clustering I using some initialization approaches. An 

additional loop of segmentation and training could be made before 

proceed to the clustering module.  

2. Cluster comparison and merging: 

o Search for all possible candidate pairs satisfying deltaBIC > 0, and select 

the best pair. 

o Merge the pair 

o Retrain the GMM for the new merged cluster with the data assigned to it, 

and the number of parameters (mixtures) of the merged model is the sum 

of the number of mixtures of the component models. 

3. The cluster comparison and merging are repeated until a stopping criterion 

(deltaBIC < 0) is reached. 

 

2.3.4. Cluster evaluation 

In general, there are three basic approaches to investigate the validity of a cluster, based 

on assessment using external criteria, internal criteria, and relative criteria (Jain, Dubes, 

1998; Halkidi, 2001).  An external assessment criterion evaluates the clustering result 

using an a priori known structure, i.e. it is a supervised approach to validation. Internal 

criteria determine if the structure is intrinsically appropriate for the data using only data 

comparisons, while relative criteria compare two structures resulting from the algorithm 

to find out which is more stable or more appropriate for the data. Thus internal criteria 

are data-based and relative criteria are algorithm-based. Both internal and relative 

validation criteria are unsupervised approaches.  Jain and Dubes (1998) discussed in 
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more detail validity indices to evaluate clusters.  This section underlines two validity 

criteria used for cluster evaluation, one supervised and one unsupervised. 

 

Supervised evaluation criteria: average purity  

The supervised clustering evaluation employs the average cluster purity (ACP) and 

average speaker purity (ASP) metrics explained in Solomonoff (Solomonoff et al., 1998) 

and Ajmera (Ajmera et al., 2002).  ASP provides a measure of how well an individual 

speaker is focused on only one cluster, while the ACP evaluates how well a cluster is 

focused on only one speaker.   

The purity of a cluster pi*  is defined as 

 ∑
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where nij is the total number of data in cluster i spoken by speaker j,  Ns is the total 

number of speakers,  Nc is the total number of clusters,  N is the total number of data,  n*j 

is the total number of vocalizations spoken by speaker j; and ni* is the total number of 

data in cluster i.  The average cluster purity (ACP) is computed using  
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The speaker purity p*j and its average speaker purity (ASP) can be calculated in 

similar ways as 
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An overall evaluation criteria to compare between systems is derived from the 

ACP and AIP to obtain 

 K = ASPACP *      (2.48) 

Values of the ASP and ACP are each 1 when a clustering algorithm results in exactly one 

cluster for each individual.  

 

Unsupervised evaluation criteria: dissimilarity index 

The dissimilarity value employed in this work to assess the consistency of clustering 

results is a generalization of the cross-data cluster dissimilarity computation mentioned in 

the previous section. To implement this, the clustering algorithm is run t times on the 

same data set using different initial conditions (or different parameter settings if 

parameter variation is of interest) and computes the average dissimilarity value of the 

labeling results as follows: 
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where Pk is the permutation of all label elements, 1{Li≠Lj}=1 if  Li≠Lj and zero otherwise. 

The smaller the multi-run dissimilarity value ∈[0,1], the more consistent is the clustering 

algorithm across this dataset. To incorporate the impact of data inclusion as well as the 

initial conditions, this idea can easily be extended to use random subsets for each run in a 

resampling-with-replacement fashion. 
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2.4. Feature extraction 

The overall purpose of feature extraction is to parameterize a vocalization into a sequence 

of feature vectors that contain concise and relevant information about the sequence of 

sounds within the vocalization.  The features extracted are expected to be able to 

discriminate similar vocalizations, able to create models without the need for an 

excessive training data; and have statistical properties which are invariant across 

vocalizations and over a wide range of environment (Rabiner et al., 1999). 

Feature extraction in speech recognition generally consists of three processes 

(Reynolds, 2002).  First, some form of speech detection is used to remove non-speech 

portions from the signals; second, the features are extracted to convey or represent 

information, and third, some channel compensation is applied.  It is known that different 

input devices will impose different spectral characteristics on the vocalizations.  Channel 

compensation such as cepstral mean subtraction and variance normalization are often 

used to remove the channel effects to get robust features (Furui, 1981; Viikki, Laurila, 

1998).  

In speech or speaker recognition Fourier analysis is still the most widely used 

approach for extracting spectral features. Sometimes, non-uniform scales are employed to 

provide a better perceptual representation, such as the mel-frequency spectral feature set.  

This is to mimic the human auditory system that processes the spectral information on a 

non-uniform frequency scale (Davis and Mermelstein, 1980).   

This section focuses on feature extraction approaches that include Greenwood 

function cepstral coefficients (GFCCs), pitch tracking, delta and acceleration 

computation, cepstral mean normalization and cepstral variance normalization.   
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2.4.1. Greenwood function cepstral coefficients (GFCCs) 

Frequency-domain features such as Mel-frequency cepstral coefficients (MFCCs) (Davis 

and Mermelstein,1980) are commonly used in most speech recognition systems.  These 

take into account the perceptual model of the human auditory system by warping the 

linear frequency axis to match the Mel-scale cochlear frequency map. 

This section briefly reviews the Greenwod function cepstral coefficients 

(GFCCs), that is discussed in more detail in (Clemins et al., 2006).  This is a 

generalization of MFCC where the frequency warping component is adjusted according 

to the perceptual model of the species – in our case, ortolan bunting bird species. 

Greenwood (Greenwood, 1961, 1990) shows that many land and aquatic 

mammals perceive frequency on a logarithmic scale along the cochlea. This can be 

modeled as  

f = A(10
ax

-b)      (2.50) 

where f is frequency (Hz),  A, a and b are species specific constants, and x is the cochlea 

position. 

For a real frequency f  a frequency warping is defined as 
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Given the approximate hearing range (fmin – fmax) of the species under study, and using 

approximation of b = 0.88 (LePage, 2003), constants A and a can be derived as follows  
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Thus, one may construct a frequency warping function using a species specific value for 

fmin and fmax and assumed value of b = 0.88.   

Figure 2.9 shows a block diagram to compute the Greenwood function cepstral 

coefficients.  

 

vocalization             cepstral  

waveform            coefficients 

Figure 2.9.  Steps in the computation of GFCC coefficients 

 

The vocalization signal is segmented into frames, and each frame is windowed.  

Windows of vocalization data are transformed using a fast Fourier transform  

 ∑
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where x(n) is the discrete-time signal with length N; k=0,1, .. N-1, and k corresponds to 

the frequency f(k) = kfs/N, fs is the sampling frequency in Hertz and w(n) is a time-

window.  Often the Hamming window is used, given by w(n) = 0.54 - 0.46cos(πn/N). 

Window sizes of 30ms are typical for human speech, based on tradeoffs between 

frequency resolution and signal stationarity.  Since ortolan bunting bird vocalizations 

have a fundamental frequency range that much higher than human speech, the window 

size is adjusted to 3ms - 6ms.  In all experiments the frame rate is one-half the window 

size so that consecutive windows overlap by fifty percent.  This overlapping allows 

improved temporal resolution for time alignment while still maintaining sufficient 

frequency resolution for spectral analysis.  
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The magnitude coefficients |X(k)| are then binned by correlating them with each 

triangular filter in the Greenwood filterbank H(k,m).  Binning means that each fast 

Fourier transform magnitude coefficient is multiplied by the corresponding filter-gain; 

and the results are accumulated, giving 
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for m = 1, 2, …, M, where M is the number of filter banks and M<<N.   The Greenwood 

filterbank is a collection of triangular filters defined by the center frequencies.   

The filterbank center frequencies are computed using the Greenwood scale of 

equation (2.51). The triangular filters are spread over the whole frequency range from 

zero up to the Nyquist frequency.  However, band-limiting using lower and upper 

frequency cut-offs is often useful to reject unwanted frequencies or to avoid allocating 

filters for frequency regions in which there is no useful signal energy.  For ortolan 

bunting vocalizations, the Greenwood filterbank (Figure 2.10) is adjusted to the range 

400 to 7400 Hz to fit the fmin and fmax of the song-bird species (Edwards, 1943).   
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Figure 2.10.  Greenwood filterbank 

 

Filterbank amplitudes, however, are typically correlated and the use of a cepstral 

transformation provides a better representation for pattern recognition.  The discrete 

cosine transform is used to calculate the cepstral coefficients from the log filterbanlk 

amplitudes X’(m) as follows 
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for i = 1, 2, … M, where c(i) is the ith GFCC.  

 

2.4.2. Pitch tracking 

Fundamental frequency estimation, sometimes referred to as pitch detection, has been a 

popular research topic for many years.  This feature is important for speech analysis, 
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speaker recognition, foreign language training, and automatic speech recognition in tonal 

languages such as Mandarin etc.  Although many pitch detection algorithms have been 

developed using a variety of approaches with varying degree of accuracy (see Rabiner et 

al., 1976; Mousset et al., 1996) robust methods are still problematic. 

Existing pitch extraction methods are generally classified into time domain, auto-

correlation, and frequency-based methods (Nobuyuki, 2000).  Time domain methods 

employ a number of zero crossings or peak clippings.  These work well in real time and 

are simple in operation, but are often not reliable in noisy environments.  The correlation-

based approach is comparatively known to be robust against noise.  This has the merit of 

simplicity but often misses the pitch frequency due to the low frequency components of 

the formants and periodic noise.  The frequency-based method or cepstrum approach sees 

the spectrum of a voiced speech signal mainly consists of periodic higher harmonics or 

the fundamental frequency.  The cepstrum method is little influenced by the formant 

frequency but easily influenced by noise. 

This section reviews a method of extracting pitch based on auto-correlation 

approach and their variation and modification such as the autocorrelation function on the 

log spectrum.   

 

Pitch extraction using autocorrelation function of the log spectrum 

Human speech production is generally being modeled as an excitation that is input to a 

system of resonators.  The convolution of the excitation with the impulse response of the 

resonator components produces the approximation of the speech signal model.  It is, 
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therefore, natural to analyze a signal as a separation of the source (excitation) and filter 

(resonators).  Cepstral analysis performs deconvolution of the source and filter.   

Nobuyuki Kumida et al. (2000) proposed a method of pitch extraction using a 

combination of the cepstrum approach and the autocorrelation method.  They suggested a 

pitch extraction by using an autocorrelation function on the log spectrum.  The 

autocorrelation function of the log spectrum S(i) is given by 

 r( j) = 1
N

S(i)S(i + j);    j = 0,1,...M
i= 0

N−1

∑     (2.57) 

where N is the upper limit of the product sum of the frequency range for calculation of 

the autocorrelation.  Due to the fact that the harmonic properties of the signals are 

disturbed in the higher frequency range, the range of N, therefore, selected to be in the 

lower range (between 0 and 2.5 kHz) where the harmonic structure is regular. M, 

meanwhile, is the upper limit of j for the calculation of r(j) and is selected corresponding 

to the existing range of pitch frequency (for human being, it is between 50 and 400 Hz).   

The autocorrelation is calculated after the formants are eliminated.  The pitch 

frequency is selected by detection of the minimum j at which r(j) has a peak. 

Figure 2.11 shows block diagram of the pitch extraction.  
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Figure 2.11. Pitch extraction using autocorrelation function of the log spectrum 
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The method of pitch extraction using autocorrelation function of the log spectrum is as 

follows: 

1. Segment the speech waveform using Hanning window (512 sampling points) 

2. Take the fast Fourier transform (FFT) of the 1024 point segment 

3. Take the log of the spectrum 

4. Lifter and flatten the log spectrum 

5. Clip the lower level to reduce the noise effect 

6. Calculate the autocorrelation function defined by equation (2.57). 

7. The frequency of the true peak of the correlation is estimated by interpolation of 

the data around the peak.  

 

2.4.3. Delta and delta-delta 

Feature vectors computed from the Greenwood function provide a good estimate of local 

spectra.  However, an important characteristic of vocalization data is its dynamic 

behavior.  The performance of a speech system can be greatly enhanced by adding time 

derivatives to the basic static parameters.  Many researchers, therefore, have made use of 

estimates of the local time derivatives.  The delta cepstrum (Furui, 1986) is one of the 

common forms of this measure.  It is typically implemented as a least square 

approximation to the local slope, or as first order regression coefficients. The time 

derivative is expressed as follows 
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where dt is a delta coefficient at time t computed in term of the static coefficients ct-k to 

ct+k. 

The second derivative, referred to as the delta-delta cepstrum or acceleration 

coefficient, corresponds to similar correlation applied to the delta coefficient. 

In practice, most systems that incorporate delta and delta-delta features use them 

as an add on to a static measure such as MFCCs or GFCCs.   

 

2.4.4. Cepstrum normalization  

Robust features are desired to provide acceptable performance under various noisy 

conditions.  For cepstral-based recognition, some methods such as Cepstrum Mean 

Normalization (CMN) (Furui, 1981) and Cepstrum Variance Normalization (CVN) 

(Viikki et al., 1998) have been commonly used.  CMN works to remove the channel 

distortion in the cepstral domain, and avoid the further amplification of low frequency 

noise (Chang-wen Hsu and Lin-shan Lee, 2004).  The CVN, meanwhile, reduces the 

difference in probability density function between the clean and noisy speech signals. 

Some researchers have also suggested further normalization, such as third order 

normalization (Yong Ho Suk et al., 1999) and higher order normalization (Chang-wen 

Hsu and Lin-shan Lee, 2004).   

The CMN and CVN are derived as follows.  For a given cepstrum vector 

sequence X = {x(1), x(2), …, x(N)}, the mean normalization of a vector x(n) is 

 

 xCMN(n) = x(n) - µx  1≤ n ≤ N   (2.59) 
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and the variance normalization of x(n) is 

   
x

CMN
CVN

n
n

v

x
x

)(
)( = ,   1≤ n ≤ N   (2.60) 

with a mean vector µx = ∑
=

N

n

N
1

)/1( x(n), and a covariance matrix vx = ∑
=

N

n

N
1

)/1( (( x(n) - 

µx)( x(n) - µx)
T
).  The cepstrum vector in equation (2.60) has a zero mean vector and an 

identity covariance matrix so that the elements of xCVN(n) are uncorrelated with each 

other.  

 



 

 

66 

2.5.   Bioacoustics 

The purpose of this section is to offer an overview of common approaches conducting 

bioacoustics research – the study of sound in non-human animals - in diverse sub-

disciplines.  It addresses the tasks associated with call-type recognition, individual animal 

identification and animal censusing using several different approaches such as cross-

correlation, dynamic time warping (DTW), and self organizing map (SOM).  The 

following are brief description of each method. The current methods on estimating 

animal abundance will be discussed in a more detail.  

 

2.5.1. Animal vocalization recognition and individual identification  

Cross-correlation approach 

Humans and animals have the temporal and spectral structure in their vocalizations. The 

temporal attributes of a vocalization include duration, repetition, sequences of the 

vocalization element.  The temporal characteristics can be measured through the 

amplitude-time waveform.  The spectral structure that can be derived from the power 

spectrum consists of frequency, bandwidth, and harmonic structures (Beeman, 1998). 

In bioacoustics the inspection of sound spectrogram has become a standard 

method to compare and to find out the similarity or dissimilarity of the animal 

vocalizations.  Clark et al. (1987) suggested a way to measure the similarity between bird 

songs utilizing sound-spectrogram cross-correlation. The spectrogram correlation 

between two syllables is examined by sliding one syllable on top of the other, and the 

correlation peak is computed.  In doing so, Clark et al. employ two methods: sound 

comparative and sound averaging.  
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The sound comparative method underlines the idea that a full representation of a 

vocalization in its frequency-time structure better serves in a vocalization analysis than a 

few of its acoustic features.  

Vocalizations to be compared are transformed into digital spectrograms to give a 

set of discrete frequency spectra.  The resultant spectrogram is a matrix with time and 

frequency as rows and columns in the matrix.  The similarity between two vocalizations 

is computed by correlating of their frequency-time matrices. 

In the computation, Clark et al. observed the similarity as the peak value of the 

correlation function computed by cross-correlating the two frequency matrices.  This 

value is achieved by time-shifting one matrix with respect to the other and calculating the 

correlation coefficients between the two matrices at each offset.  This results in a 

sequence of correlation coefficients.  

The peak value of the correlation function represents the similarity of the two 

vocalizations and is used as a quantitative measure of similarity.  Both matrices to 

compare are normalized to give a similarity value between ± 1.00.  

When vocalizations are classified to be in the same group, Clark et al. saw the 

importance of generating an average vocalization type.  The averaging process starts with 

the alignment of the set of frequency time matrices using sound comparative method, 

then summing the matrices and dividing the resultant summed matrix by the number of 

sounds in the set.  The result of the above steps is an average sound matrix represented 

the average sound-type for the set. This can be displayed in a spectrogram similar to that 

used for displaying individual vocalizations.  
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The methods of sound-comparison and averaging are applied to analyze the 

syllables or notes in one song-type of an individual male swamp sparrow.  The song 

consists of repetitions of a two note syllable composed of note called type II and IV.  The 

results show the usefulness of the methods and reveal new details in the description of the 

swamp sparrow’s set of note types and in the decrease of note variability during the 

developmental transitions from sub-song, to song crystallization.  

Melinger and Clark (2000) extended the spectrogram correlation method to 

address the recognition problem of the end notes of bowhead whale songs.  The notes are 

portions of a bowhead’s song that occur one or more times in succession at the end of 

each song repetitions.  They are distinctly different from the preceding portion of the 

song.  This end notes are chosen because they are relatively loud and typically occur 

several times per song (Clark, 1991).   

The method operates on spectrograms computed from the time-series waveform 

of a sound.  Examples of the sound-type (in this case bowhead song end note) are used to 

construct a correlation kernel for the vocalization.  A kernel is a two dimensional image, 

consists of several segments.  Each segment represents each frequency sweep of the 

desired vocalizations.  

To recognize the vocalization of interest in a recording, one makes a spectrogram 

of the recording and cross-correlates with the kernel representing the signal of interest.  

The result of this cross-correlation is a recognition function.  It is a time series of 

recognition values that represents the closeness of the match between the kernel and the 

recording at each time increment of the spectrogram.  Larger value in the time-varying 
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recognition function represents higher likelihood that a bowhead song end note presents 

in the recording.  

Mellinger and Clark tested the method by comparing the performance with a 

matched filter and an HMM approaches. Match filtering (van Trees, 1968) is a method 

for detecting a signal in a white Gaussian noise.  The match filter kernel is constructed 

from signals of several high-quality vocalizations.  All time series are placed in a matrix.  

The method calculates a sample covariance matrix, and computes the eigenvector 

corresponding to the maximum eigenvalue.  In order to produce output function, the 

resulting kernel is cross-correlated with the test vocalizations.  The correlation score is 

derived from the maximum correlation value of a given vocalizations.  

The comparative results show that matched filter work poorly in recognizing 

bowhead song end notes; the HMM works fairly well, and the spectrogram correlation 

offers the best results.  

Measures based on the full spectrogram suffer from a fundamental problem of 

high dimensionality of the basic features (Tchernichovski et al., 2000).  Cross-correlation 

between vocalizations can be useful if vocalization is first partitioned into its notes or 

syllables and if the notes compared are simple.   

The partition of vocalization into syllables or notes, however, in itself can be a 

problem.  Partitioning a song into syllables is relatively straightforward in a song where 

syllables are always preceded and followed by a silent interval, such as the canary 

Servinus canania (Nottebohm and Nottebohm, 1978).  It is more difficult in the zebra 

finch, where song includes many changes in frequency modulation and in which diverse 

sounds often follow each other without intervening silent intervals.  
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Some studies address the above problems by reducing complex sounds to an array 

of simple features and by implementing algorithms that do not require partition of the 

vocalization into its syllable component.  

 

Dynamic time warping (DTW)  

As mentioned in the previous section, Clark et al (1987, 2002) suggest a quantitative 

measure of vocalization similarity using the entire spectrogram of the signal.  The 

magnitudes of the spectrograms of the two vocalizations are cross-correlated temporally 

and the peak value of the correlation gives a relative value of similarity.  The method, 

however, is not appropriate for some animal vocalization because it does not account for 

the possibility of time dilation of the vocalization (Buck, Tyack, 1993).  

The animal vocalizations are not always produced with temporal consistency.  

The length of a specific vocalization may vary between occurrences.  A dynamic time 

warping (DTW) method, widely used in the early of speech recognition, allows limited 

compression and expansion of the time axis to align the vocalizations and provides a 

quantitative distance measure between vocalizations.  

In marine mammals, DTW was first used by Buck and Tyack (1993) to classify 

15 dolphin signature whistles into 5 groups. Later Brown et al (2007) use DTW to 

measure the dissimilarity of killer whale calls and to classify the calls using frequency 

contours of their biphonic vocalizations.  Killer whale pulsed calls contain two 

overlapping but independently modulated contours or voices.  This biphonation feature is 

common in birds but has been described for few marine mammal sounds (Tyson, 2006).  

The challenge in analyzing this complex sound is to determine the fundamental frequency 
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of these two components from the same sound.  Brown et al. separate low and high 

frequency contours for analysis, and then employ DTW for automatic classification of 

curves of different lengths. They employ four different cost matrices in DTW, namely, 

Ellis method, Sakoe-Chiba method, Itakura approach and Chai Vercoe method (Brown, 

2007). For each method the distances given by the dissimilarity matrices are transformed 

into a Euclidean-like space using multi-dimensional scaling. They are then clustered 

using a k-means algorithm into seven call-types to compare to the perceptual 

classification.  

 

Self Organizing Map (SOM)  

The self organizing map (SOM) of Kohonen (1990) is a clustering and visualization tool 

that enables the organization of data in an unsupervised manner.  It projects high-

dimensional data into a set of models located at the nodes of a low-dimensional grid.  The 

similar data patterns in the input space, therefore, will be assigned to the same map unit 

(node) or nearby units on the trained map.  

The SOM has widely applied in image processing (Dong, Xie, 2005), process 

monitoring and control (Kasslin et al., 1992), speech recognition (Guterman et al., 2002), 

and flaw detection in machinery (Vapola et al., 1994).  Recently, applications in other 

fields have emerged including information retrieval (Kohonen et al., 2000), medical 

diagnosis (Chen et al., 2000), time-series prediction (Bareto, 2004) and bioacoustics 

(Placer et al., 2006).  

The construction of a SOM is based on competitive learning and the use of 

neighborhood when adapting the models. The training of a SOM involves two steps, 
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namely, determining the best-matching unit (BMU) and updating the BMU and its 

neighbors.  

 

Determining the best-matching unit 

Let an input data be a high-dimensional vector of real number X = {x1, x2, … xn} in the 

Euclidean space where xi is the value of ith component.  Each unit in an associated SOM 

for a n-dimensional training data set is also a n-dimensional real vector mi = { mi1, mi2, … 

min}  where mik is the value of k-th component.   

Generally, a distance function is employed to measure the similarity.  The BMU 

of an input x is defined as mv = arg min i {d(x,mi)} where mi is a unit on the map. A 

method to compute the distance d(x,mi) is typically using the Euclidean distance function 

  d(x,mi) = ||x – mi|| = 
2/1

1

2)( 






 −∑ =

n

k
ikk mx    (2.61) 

 

Updating BMU and its neighbors 

The BMU and its neighbors are updated to reduce the difference with the input pattern, 

once the BMU is identified.  The updating is centered at the BMU, and the adjustment 

amount decreases with the increasing distance to the BMU.  Similarly, the update 

neighborhood also decreases with the increasing training epochs. The update rule for a 

neighborhood unit mi is as follows: 

 mi(t+1) = mi(t) + α(t) hj,i(t){x(t)- mi(t)}   (2.62) 

where 0 < α(t) < i is the learning-rate function and hj,i(t) is the neighborhood function. 

Both α(t)  and hj,i(t) decrease gradually with the increasing step t.  
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Placer et al. (2006) employ a SOM to identify acoustic units of Gunnison’s prairie 

dog alarm calls in the presence of three different predator species. The approach allows 

individual calls to be classified by its predator species.  A SOM is trained to identify 

clusters of acoustic units in Gunnison’s prairie dog alarm calls where each cluster 

contains sounds with similar acoustic properties.  Individual sounds belonging to specific 

clusters as well as combination of these sounds are found to be associated exclusively 

with alarm calls vocalized in the presence of a specific predator species. 

Sumervou and Harma (2000), meanwhile, present a method to organize and 

visualize the syllables of 5 species of Phylloscopus birds. Each syllable is represented as 

a sequence of two-dimensional feature vectors.  One component represents the 

instantaneous frequency and the other represents the amplitude. The organization of 

syllables utilizes DTW to compute the pair-wise distance between data sequences, and 

SOM is employed to visualize the data.  They use eigenvector decomposition to project 

the high-dimensional feature vectors into lower dimensional space before training the 

SOM with fixed-dimensional model vectors.  

 

2.5.2.  Animal population estimation 

Some studies of animal populations require estimates of population density D or size N, 

or, the rate of population change λt = Dt+1/Dt = Nt+1/Nt.  These estimates vary in time and 

over space as well as by species, sex and age.   

This section presents two main approaches for estimating animal population, the 

mark-recapture method and the distance sampling method (line transect and point 

transect).  The method of estimates described in this section assumes the population to be 
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‘closed’.  That is, there are no gains (births or immigration) or losses (deaths or 

emigration) during the course of the study.  To minimize the chances of losing or gaining 

individuals, the study should be over a short period and at a time of the year when births, 

deaths and movements are likely to be few.  The discussion is mostly based on Buckland 

et al. (2004) and Borchers et al. (2004).   The first part of this section presents the 

maximum likelihood framework in estimating abundance, followed by the distance 

sampling method, and the mark-recapture approach.  

 

2.5.2.1. Using likelihood for estimating animal population 

Buckland et al. and Borchers et al. address the method of estimating animal population 

using the maximum likelihood estimation (MLE) framework.  To construct the likelihood 

function one needs to formulate the estimation problem in statistical terms.  The whole 

region to estimate abundance is called the survey region.  The number of animals in the 

survey region is N, and the number of animals detected is n.  Assume that the probability 

of detecting any animal in the survey region is p, and that the detections are independent 

events.  

A survey can be seen as consisting of N independent trials, where each animal is a 

trial.  When the animal is detected, it is a “successful” outcome; otherwise, it is a 

“failure”.  These are the conditions underlying the derivation of the binomial distribution.  

In this case n is a binomial random variable with parameters N and p.  The probability 

density function (pdf) that gives the probability of getting exactly n successes on the 

survey is 

f (n;N, p) =
N

n

 

 
 

 

 
 p

n (1− p)N−n      (2.63) 
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where  
N

n

 

 
 

 

 
  is the number of ways for choosing the n animals to appear in the sample 

from the N animals in the population.  When the survey is done, one knows the number 

of n.  Assume that the expected proportion of the detected animal is p = 0.5; then the only 

unknown quantity is N.   

Equation (2.63) may be expressed as the likelihood function of N as follows 

 L(N | n, p) =
N

n

 

 
 

 

 
 p

n (1− p)N−n     (2.64) 

The difference between equation (2.63) and (2.64) is that N is treated as a fixed constant 

in equation (2.62).  One needs to plot and evaluate the likelihood as a function of N in 

equation (2.64).  The N where the likelihood function of equation (2.64) achieves its 

maximum value is the maximum likelihood estimator (MLE) of N.  

 

2.5.2.2.  Simple mark-recapture 

The basic idea of the mark-recapture method is quite simple.  It involves capturing 

animals, marking them and releasing them back into the population.  A second sample is 

taken some time later.  The population estimate is calculated from the ratio of marked to 

unmarked animals in the second sample.   

Suppose n1 is the number of animals first marked and released, n2 is the size of 

the second sample, m2 is the number of marked animals in the second sample.  If N is the 

total population size, the mark-recapture method estimates that m2/n2 = n1/N.  Since n1, 

n2, m2 are known, it is obvious that N can be easily estimated.  Most mark-recapture 

methods rest on that idea, though the animals may be caught or marked on several 

occasions.  
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It is interesting to note that any estimate derived from this approach is only 

representative of that fraction of the population that can be caught.  Members of 

population that can not be sampled by a particular method do not take part in the 

estimate.  

Animals can be captured and marked in a variety ways.  Capture might be 

physical capture or simply detection (by eye, satellite, radio).  Marking might involve 

physically attaching a mark to the animal, using acoustically or naturally occurring 

markers based on variation in phenotypes of genotypes, or notional marking of the animal 

by its location at a given time.  McGregor and Peake (1998) list details on marking 

approaches that render animals individually distinctive to an observer.  

A two-sample mark-recapture involves one session of catching and marking, and 

one session of recapturing.  One might assume that all animals in the population are at 

risk of being caught, and capture probability (p) does not depend on individual animal 

characteristics.  The likelihood, then, consists only of an observation (capture) model.  

Buckland et al. underline two main assumptions, namely, that (a) all animals are equally 

catch-able on any one survey occasion.  (b) Detections of animals are independent events, 

both within a survey and between surveys.   

This section now derives a likelihood for population estimate N, the probability of 

catching animal p1 and p2, given the number of marked animals in the population. 
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First capture occasion 

On the first survey, animals are assumed to be captured independently with equal 

probability p1. The probability of catching n1 = u1 unmarked animals, given that there are 

U1 = N animals in the population is 

 111 )1( 11

1

1

1

uUu
pp

u

U
P

−−







=      (2.65) 

The likelihood function for the first capture is a function of N = U1 and p1. 

 

Second capture occasion 

In the first survey one catches animals in the population, marks them and releases them.  

By the time of the second survey the population is split into two types: marked and 

unmarked.  The number of marked animals by the start of the second occasion is the 

number of animals captured on the first occasion, namely, M2 = n1 = u1.  The outcome of 

the second survey, therefore, is not just the number captured on the survey (n2), but both 

the known M2 marked animals that were captured ( m2) and how many unknown U2 = (N-

M2) unmarked animals were captured (u2). The probability of observing n2 = (u2, m2)
T
 is 

therefore a product of two binomial likelihoods. The first is the probability of catching 

marked animals m2: 
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Second, the probability of unmarked animals which is as follows: 
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The combination of equation (2.65) and (2.66) to estimate p2 and N is: 

 L2   = P2u × P2m 
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Putting the two capture occasions together 

The estimate of N, p1, p2 simultaneously from the full likelihood for both capture 

occasions, given the observed data u1, m2 and u2 can be written as 

 L = Psu × Psm
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M s −ms   (2.69) 

 

Interval estimation 

Most uncertainty in simple mark-recapture estimates arises from the observation process.  

Variance and confidence interval estimates are based on the observation model alone.  

Profile likelihood confidence intervals can be constructed using the probability density 

function.  For the case in which the capture probability is the same on both capture 

occasions, the profile likelihood is obtained by evaluating equation (2.69) with p1 = p2 = 

p at 

 p1(N) = p2(N) = p(N) = 
n1 + n2

2N
    (2.70) 

Alternatively, one can use the following approximately unbiased estimator of the 

variance of Chapman’s modified estimator, due to Seber (1970) and Wittes (1972) 
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 Var [ N̂ ] = 
(n1 +1)(n2 +1)(n1 − m2)(n2 − m2)

(m2 +1)2(m2 + 2)
   (2.71) 

 

A likelihood for multiple capture occasions 

The likelihood of equation (2.69) may be extended to more than two occasions simply by 

taking the product over all occasions.  In general, for S occasions 
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Assessment of the method 

More information can be collected from a study population when individual animals can 

be identified.  The mark-recapture method fulfills this task, namely that detailed 

information can be recorded on each captured animal.  Survival rates may be estimated; 

and recaptures provide information on animal movement. 

The method is also preferable for populations of animals that may not be 

sufficiently detectable in a sighting survey, perhaps because they are small, are hidden 

amid vegetation, move away from the observer before they can be detected or identified, 

or spend much time in the ground. 

The mark-recapture method provides invaluable information, but may be 

inappropriate for a variety of reasons.  Marks, for example, may modify the normal 

behavior and physiology of animals and affect their survival.  Marking needs catching.  

Any capture method has the potential to produce biased data because it will preferentially 
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catch particular animals.  Capture may impose costs on the animal, generally in the form 

of direct physical injury from the catching and holding equipment.  Some species may be 

difficult to catch or difficult to track post-release.  It may be desirable to avoid any 

disturbance associated with the capture.   

 

2.5.2.3. Distance sampling 

Distance sampling covers several related methods that involve measuring the distances of 

detected animals from a line or point.  The methods estimate animal abundance in two 

steps, namely: 

1. estimate the number of animals in the covered region ˆ N c   

ˆ N c =
n

ˆ p 
 

where n is the number of detected animals, and ˆ p  is the detection 

probability (to be estimated) 

2. estimate the animal abundance in the survey area ˆ N  using the number of animal 

in the covered region ˆ N c  

ˆ N =
ˆ N c

π c

 

where π c  is the known coverage probability. 

 

Putting the two steps together result in  

ˆ N =
ˆ N c

π c

=
n

π c
ˆ p 

      (2.73) 
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The key idea in the distance sampling is to estimate the probability of detection p by 

modeling the decline in detection frequency with distance.  

There are two main methods of distance sampling, line transect sampling and 

point transect sampling. A survey using line transect sampling searches J strip areas of 

width 2w.  Let the strip j has length lj with l j
j=1

J

∑ = L .  The size of the covered region in 

this study is a = 2wL.   

The observer in line transect sampling travels along a centerline, and records each 

detected animal with the perpendicular distance x from the line.  All animals on or near 

the centerline should be detected, and a proportion of animals within distance w of the 

line may be missed.  Probability of detection, therefore, may decrease with distance from 

the line, out to some distance w.  This method is called a distance sampling because it 

samples distances of animals from a line.  

Point transect sampling, meanwhile, can be considered as a line transect of zero 

length (i.e., a point).  Assume a series of k points randomly positioned in the survey area.  

An observer measures the distance x of each animal from a point.  Upon completion of 

the survey there are n distance measurements of the animals.  In point transect sampling, 

area closed to the point are censused.  A proportion of animals away from the point but 

within the sampled area may remain undetected.   

The important element in distance sampling is the detection function g(x).  This 

function is the probability of detecting an animal that is at a perpendicular distance x 

from the center line (for line transect method) or at a radial distance x from a point (for 

point transect method). The function g(0) = 1 when all animals on the line or at the point 
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close to the observer are detected.  The expected proportion of animals detected within a 

strip in line transect is: 

w

dxxg
p

w

∫
= 0

)(
     (2.74) 

and the abundance estimation is 
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For point transect method the expected proportion of animals detected is 
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and the abundance estimation for k points in the point transect is 
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Assessment of the methods 

A line transect sampling method is mostly used for estimating the abundance of cetaceans 

and large terrestrial mammals; line and point transects for birds.   

The line transect method is useful for a population in which animals are readily 

detectable if they are close to the observer, and useful for sparsely distributed 

populations.  The method is also particularly suited for large survey regions.  A high 

proportion of time in the field is typically spent on “effort” (namely, searching for 

animals from the line), so the method makes efficient use of resources.  Further, overall 

precision is largely determined by the number of animals detected, not by the size of the 

population.  
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Point transect method, meanwhile, is used mostly for songbirds, although it has 

been applied to spotlight counts of hares and foxes and to estimate number of rare species 

of trees in tropical rain forests.  For songbirds, there are several advantages to point 

transect sampling over line transect approach.  In difficult terrain, it is easier to stand at a 

point and record birds rather than walk along a line.  In places where accesses are 

difficult, it is advisable to locate and get to a random point rather than navigate along a 

random line.  The disadvantages of this method are: random movement of birds generate 

greater bias for point transects, more time is spent “off-effort” – traveling from one point 

to the next.  A larger area sometimes is needed because the covered area close to the 

observer is smaller.   

 

2.6. Summary 

The study presented in this dissertation borrows methods and concepts from human 

speech processing.  The two supervised tasks in speech processing that are most closely 

associated with this research - speech recognition and speaker identification - along with 

the use of HMMs and GMMs have been introduced.  

 The idea of an unsupervised task of clustering using HMMs has been discussed as 

well.  The discussion addresses two clustering methods: HMM-based k-model clustering 

and HMM-based hierarchical agglomerative clustering.  The approach incorporates the 

dissimilarity analysis and delta-BIC computation to estimate number of clusters in a data 

set, as well as supervised and unsupervised methods to assess the validity of clustering 

results. 
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 The next chapter will address the question of which among the features or 

combination of features employed in the above tasks are fit for the vocalization 

recognition and which are better suited for the individual identification.  

 In the following chapters the HMM-based supervised recognition – automatic 

speech recognition and speaker recognition – along with HMM-based unsupervised 

clustering approach will be integrated as a framework and applied to the task of animal 

population structure assessment and animal abundance estimation.  
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CHAPTER 3 

FEATURE ANALYSIS 

 

3.1. Introduction 

As mentioned in the previous chapter, the overall purpose of feature extraction is to 

parameterize a vocalization into a sequence of feature vectors that contain concise and 

relevant information about the sequence of sounds within the vocalization.  The features 

extracted are expected to be able to discriminate similar vocalizations, able to create 

models without the need for an excessive training data; and have statistical properties 

which are invariant across vocalizations and over a wide range of environment (Rabiner 

et al., 1996). 

 This chapter describes experimental comparison of features for song-type 

recognition and individual identification animal vocalizations.  The overall goal is to find 

out which features are most appropriate for the song-type recognition and which features 

are significant for the individual identification task.  

 The organization of the chapter is as follows. Section two briefly presents some 

characteristics of the study population, ortolan bunting.  Section three overviews a HMM-

based method of vocalization recognition and individual identification, focusing on the 

training of the models and the use of the models for recognition or classification.  Section 

four presents the results and discussion.  Section five concludes with a short summary.  
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3.2. Ortolan bunting data  

The subject for this feature study is the ortolan bunting. Their vocalization data was 

collected from County Hedmark, Norway in May of 2001 and 2002 (Osiejuk et al., 

2003).  The most frequent song-types within the studied population were chosen, i.e., ab, 

cd, gb, eb, huf, h, jufb, guf and ef. All recordings were transferred to a PC using 48 

kHz/16 bit sampling.  For more detail description of the ortolan bunting data set, the 

reader is referred to Chapter 5.  

 

3.3. Methods 

This section deals with supervised recognition tasks. A supervised recognition is a task in 

which a set of data has been labeled with the correct classification.  The labeled data is 

split into training data used to train the system, and a test set for evaluation.  Two 

recognition tasks are investigated, including determination of song-type given a known 

repertoire, as well as identification of individual bird.  As mentioned in the previous 

section in the context of this feature study, the objective is to find out the best feature for 

call-type recognition and the most appropriate feature for the individual identification.  

 

3.3.1. Model training and call-type/individual recognition 

This study uses syllables as unit models for recognition. Training of unit models 

consists of estimating the model parameters from a training set of vocalizations in which 

all of the relevant syllables are known to occur sufficiently often. The way in which 

training is performed greatly affects the overall recognition system performance, and 

having a large training set is a key factor.  
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The Hidden Markov Models (HMMs) are used to model each of the different call-

types. As mentioned in Chapter 2, a HMM is a statistical model that uses a finite number 

of states and the associated state transition to jointly model the temporal and spectral 

variations of signals. For bird vocalizations, states represent the time sequence of a 

syllable as shown in Figure 3.1.  

 

 

 

 

 

 

 

 
 

Figure 3.1.  Markov model for ortolan bunting song 

 

The task of a HMM is essentially to map a sequence of observations onto a sequence of 

states, and determine the likelihood that the observation could have been generated by 

that model.  

A grammar model is constructed to model the variants of each call-type.  The 

complete grammar can be depicted as a network as shown in Figure 3.2.  

 

start end 
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Figure 3.2.  Language model for call-type in ortolan bunting 

 

The above figure shows the topology of grammar constraints that allow only recognition 

of valid call variants.  The ability of the HMM to incorporate such a constraint offers 

significant benefit for performance.  

Figures 3.3 and 3.4 summarize the use of HMM for call-type and individual 

recognition tasks. First, a HMM is trained for each call-type or individual bird using a 

number of examples of that call-type or bird. This step estimates the model parameters 

(A, B, π) that optimize the likelihood of the training set for call-types or individual birds 

in the vocabulary. 

 

Figure 3.3. The use of HMM for model training 
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To recognize an unknown vocalization, the likelihood of each model generating 

that call-type or bird is calculated; and the most likely model identifies the call-type or 

bird.  

 

Figure 3.4. The use of HMM for recognition 

 

To explore the application of HMMs to bird song, the programming toolkit 

Hidden Markov Model Toolkit (HTK) developed by Young et al. (2002) has been 

employed. HTK provides sets of tools that include the Baum-Welch re-estimation 

algorithm to compute the maximum-likelihood estimates of unknown parameters for 

training and the Viterbi algorithm to classify new vocalizations for the recognition.  

Though HTK is primarily designed for speech recognition, in this research its 

tools will be adapted and used for analysis and recognition for bird vocalizations.  
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3.3.2.    Assessment of the methods 

The accuracy of the method is evaluated by comparing the test vocalizations that match 

the recognizer output with the correct reference transcription.  For the analysis of call-

type recognition and individual identification output, the comparison is performed using 

dynamic programming to align two transcription and then count substitution (S), deletion 

(D) and insertion (I) errors. The percentage number of labels correctly recognized is 

given by  

 Percent Correct = H/N x 100% 

and the accuracy is computed by 

 Accuracy = (H-I)/N x 100% 

where H is the number of correct labels and N is the total number of labels in the defining 

transcription files.  

 

3.4. Experimental results and discussion 

Features for the experiments consist of all features discussed in Chapter 2. These include 

the Greenwood function cepstral coefficients (GFCCs), delta (D) and acceleration (A), 

energy (E), cepstral mean normalization (MN), cepstral variance normalization (VN), and 

pitch (P). The repertoires are Hamming windowed with frame sizes varying from 2 to 6 

ms and step sizes varying from 1 to 3 ms.  The Greenwood frequency warping constants 

are calculated using an appropriate ortolan bunting hearing range of fmin 400 Hz to fmax 

7400 Hz as determined by Edwards (1943). Classification and individual identification 

models are 15-state left-to-right HMMs with each state containing a single diagonal-

covariance Gaussian.  Silence models are added at the beginning and end of all 
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vocalizations.  The Baum-Welch expectation maximization algorithm is used to estimate 

the model parameters and the Viterbi algorithm is employed for recognition.  The 

recognition is performed a number of time using various features and parameters to show 

the effect of each feature on recognition accuracy.  

 

Song-type recognition 

Speaker independent song-type classification experiments are performed across the eight 

most common song-types selected from data 2001 and data 2002.  Each call-type 

contains multiple song-variants.  The experiments employ 2,997 vocalizations of data 

2002 as a training set for recognition of 1,190 vocalizations of data 2001.   

Initially song-type recognition experiments are performed using GFCC features 

for window-size selection to find out the best window-size for recognition in terms of 

overall accuracy.  Table 3.1 shows the accuracy of song-type recognition results on five 

different window-sizes.  Of the different window-sizes, GFCC with window-size 3 ms 

and overlap 1.5 ms leads to the highest accuracy.  This window-size is then selected for 

the rest of the song-type and individual bird recognition procedures.  

 

No Window size (ms) Overlap (ms) Accuracy (%) 

1 

2 

3 

4 

5 

2 

3 

4 

5 

6 

1 

1.5 

2 

2.5 

3 

75.55 

76.47 

75.55 

71.51 

71.59 

 

Table 3.1. Song-type recognition accuracy for various window-sizes and frame step-sizes 
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Table 3.2 shows the accuracy results of song-type recognition with different features.  

 

No Features Accuracy (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

GFCC 

GFCC_D 

GFCC_D_A 

GFCC_E 

GFCC_E_D 

GFCC_E_D_A 

GFCC_E_D_A_MN 

GFCC_E_D_A_VN 

Pitch 

Pitch_D 

Pitch_D_A 

GFCC_E_Pitch_D_A 

GFCC_E_Pitch_D_A_MN 

GFCC_E_Pitch_D_A_VN 

76.47 

80.84 

82.60 

77.47 

82.26 

83.86 

90.00 

91.59 

72.94 

77.39 

78.82 

86.22 

77.14 

82.60 

 

Table 3.2. Song-type recognition accuracy results for various features 

 

Results range from 72.94% with pitch feature to 91.59% for GFCC_E_D_A_VN feature.  

It can be observed that most cepstral features outperformed pitch feature sets. GFCC 

along with energy, delta, acceleration and variance normalization coefficients give 

HMMs the highest discriminant power,   correctly classifying 91.59% of the test samples. 

As discussed in the previous section, cepstral normalization is a method used to 

normalize the effect of convolutional noise in a system.  By subtracting the mean 

cepstrum from the cepstral coefficients, convolutional noise can be removed assuming 

the noise is stationary throughout the vocalization. Cepstral variance normalization, 

meanwhile, has been argued effectively reduce the difference in probability density 

function between the clean and noisy speech signals.  The HMM with pitch feature, 

meanwhile, can only correctly recognize 72.94% of the test song-type samples. 
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Table 3.3 presents the confusion matrix for GFCC_E_D_A_VN feature vector.  

 

 ab cb cd eb gb guf h huf 

ab 200 0 0 0 0 0 0 0 

cb 1 121 10 0 65 0 3 0 

cd 0 1 199 0 0 0 0 0 

eb 0 1 1 198 0 0 0 0 

gb 0 12 2 0 134 0 1 1 

guf 0 0 0 0 0 59 0 1 

h 0 0 0 0 0 0 100 0 

huf 0 0 1 0 0 0 0 79 

 

Table 3.3. Song-type recognition with GFCC_E_D_A_VN feature 

 

Each row of the above matrix represents the labeled class of the song-type while the 

columns represent the classification given by the system to each song-type.  The numbers 

on the diagonal are the number of correctly classified vocalizations for each song-type.    

Song-type cb and gb seem the most difficult song-type to classify. The above result 

indicates the similar characteristics of call-type cb and gb. It can be expected that this 

acoustic similarity may create inconsistency in the song-type recognition.  

 

Individual bird recognition 

Song-type dependent individual bird identification experiments are performed using 100 

exemplars of the most frequent song-type ab for each 9 individual birds. As indicated in 

the previous section, most of the features are extracted using a 3 ms Hamming window 

with 1.5 ms frame step size. The goal of this task is to show that individual birds can be 

identified from their acoustic features, and to find out which feature is best for individual 

bird recognition.  
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Five fold cross validation is used.  The data is split into five approximately equal 

partitions and each in turn is used for testing and the reminder is for training, so that 

every vocalization has been used exactly once for testing.   

 

Table 3.4 shows the results for each of the feature sets.  

 

No Features Accuracy(%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

GFCC 

GFCC_D 

GFCC_D_A 

GFCC_E 

GFCC_E_D 

GFCC_E_D_A 

GFCC_E_D_A_MN 

GFCC_E_D_A_VN 

Pitch 

Pitch_D 

Pitch_D_A 

GFCC_E_Pitch_D_A 

GFCC_E_Pitch_D_A_MN 

GFCC_E_Pitch_D_A_VN 

77.44 

79.22 

80.00 

81.00 

81.44 

82.00 

79.33 

79.22 

59.11 

64.00 

66.89 

74.33 

73.00 

71.56 

 

Table 3.4. Individual bird recognition accuracy results for various features 

 

The accuracy results vary from 59.11% to 82.00%.  The HMMs with pitch feature shows 

poor performance, correctly recognizing only 59.11% of the test samples.  The variance 

normalization that increases accuracy for song-type recognition experiments doesn’t give 

significant discriminant ability to the system. The HMMs with GFCC coefficients 

together with energy and their dynamic coefficients delta and acceleration is able to 

correctly identify 82% of the individual birds in the test set, the best those presented.  

Table 3.5 presents the confusion matrix for individual bird recognition using 

GFCC_E_D_A as its feature. 
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 Bird1 Bird2 Bird3 Bird4 Bird5 Bird6 Bird7 Bird8 Bird9 

Bird1 97 0 0 0 1 1 0 0 1 

Bird2 0 87 12 0 0 1 0 0 0 

Bird3 0 22 78 0 0 0 0 0 0 

Bird4 0 39 0 36 3 0 0 22 0 

Bird5 9 0 0 0 80 8 0 2 1 

Bird6 6 0 0 0 2 91 0 0 1 

Bird7 0 0 0 0 0 0 96 2 2 

Bird8 6 0 0 4 1 0 0 86 3 

Bird9 9 1 0 0 1 0 2 0 87 

 

Table 3.5. Individual bird recognition with GFCC_E_D_A feature 

The system does a better task of identifying Bird1 and Bird7, and poorer effort of 

recognizing Bird4.  Most samples of Bird4 are classified either as Bird2 or Bird8.  It can 

be expected that the acoustic similarity in these three birds may create inconsistency in 

individual bird recognition.  

Since most useful features vary by tasks, and since it is preferable to limit the 

number of feature used, this study implements feature selection for vocalization analysis.  

The experiments through the song-type recognition and individual bird identification 

show that the selection of features determines the separability of call-types and individual 

birds.  The selection of the features has a large influence on the classification step and 

should be carefully considered in the system design, since the classifier must be tuned to 

the given feature space (Eriksson et al., 2005).   

 

3.5. Summary 

This chapter addresses the question of which among the features or combination of 

features are fit for the repertoire recognition task and which are robust for an individual 
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classification task. The study examines some feature extraction approaches such as the 

Greenwood function cepstral coefficients (GFCCs), pitch tracking, delta and acceleration 

computation, cepstral mean and cepstral variance normalization.   

Some validations through song-type recognition and individual identification of 

ortolan bunting show the features that combine GFCC, energy (E), delta (D), acceleration 

(A) and variance normalization (VN) are best for call-type recognition, and therefore best 

for call-type clustering; and likewise, GFCC along with energy, delta and acceleration 

features give better discriminant power for individual bird recognition and for individual 

bird clustering.    

Unfortunately, none of the features evaluated here had the property of being well-

suited for one of these tasks and not the other, making the target task of unsupervised 

speaker clustering across multiple call-types much more challenging.  

Feature extraction steps and feature selection processes discussed in this chapter, 

will be incorporated in the HMM-based supervised and unsupervised recognition as a 

framework applied to the task of population assessment discussed in the following 

chapters. 
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CHAPTER 4  

AN ACOUSTIC ASSESSMENT OF THE BELUGA WHALE 

POPULATION STRUCTURE 

 

4.1. Introduction 

Free-ranging cetaceans which are visible above waters for only short periods of times are 

challenging research subjects.  The lack of precision in most whale and dolphin studies is 

best exemplified by population estimates; it is currently not possible to count most 

populations with any degree of confidence.  It is not easy to observe the changes in 

population characteristics such as birth and death rates in response to the changing of the 

environmental conditions.  

Acoustics has been used to study marine mammals for decades. Only a few 

researchers, however, have attempted to examine the use of their vocalizations to assess 

populations.  The term assessment is usually used to describe the process of evaluating 

the status of population relative to some management goal. This involves studies of the 

population structure, abundance and density, seasonal distribution and trends, and the 

evaluation of human-made noise impacts on the animals (Mellinger and Barlow, 2003).   

Studies of cetaceans’ population structure have mainly focused on the use of 

genetics, tagging and photo-identification (Barlow, 2003).  The use of acoustic animal 

vocalizations observation can complement visual observation to provide more accurate 

estimates of the population.  The best examples of the use of animal vocalizations in 

assessment are: the studies of sperm whale population (Barlow and Taylor, 1998), the 
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humpback whales in the Caribbean (Garrison et al., 2003), and harbor porpoises in the 

Northwest Atlantic (Palka, 2003), where combined visual and acoustic methods have 

significantly improve the population estimate. 

Visual and acoustic methods have different strengths and weaknesses.  Visual 

techniques observe animals during periods of surfacing, whereas acoustic methods 

monitor submerged animals.  Acoustic approaches can include data that are difficult to 

obtain with visual methods by providing continuous temporal coverage that are relatively 

independent of daylight and weather.  It is, therefore, able to offer information on 

seasonal animal presence.  Acoustic methods are often to be best applied to small areas.  

Visual surveys, on the other hand, are typically designed to cover a broad region as to 

provide a synoptic assessment of the total population (Hildebrand, 2003).  

The objective of this chapter is to explore how the HMM-based framework 

discussed in the previous chapters might be utilized for marine mammal population 

structure assessment.  This chapter is an effort to determine the relationship between 

established beluga social groups as indicated by their vocalizations.  If acoustic 

differences between populations of marine mammals – in this case beluga whales - are 

closely connected to genetic differences, then their vocalizations’ analysis would offer a 

relatively fast and inexpensive method to assess their social groups or their population 

structure (Mellinger and Barlow, 2003).   

The chapter is organized as follows. Section two briefly presents some 

characteristics of the study population, beluga whales.  Section three overviews a method 

to analyze repertoire similarity among established beluga social groups.  The method 

integrates feature analysis to extract feature vectors of beluga vocalizations, dissimilarity 
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analysis to estimate the number of different repertoires in the data sets, maximum 

variance initialization to initialize cluster models, HMM-based k-model clustering to 

group similar repertoires, and dissimilarity value computation to assess consistency of the 

clustering results.  Section four presents the results and compares the repertoire grouping 

especially among wild and captive belugas.  Section five concludes with a discussion and 

a short summary. 

 

4.2. Beluga whales, Delphinapterus leucas 

Cetaceans live in an environment in which vision is not the most important sense.  They 

rely upon sound as their means of communication and assessment of their surroundings.  

They employ their vocalizations for echolocation, navigation and communication 

(Parson, Dolman, 2004).  

Echolocation is the ability of animals to determine the physical features of the 

surroundings by producing mid or high-frequency vocalizations and detecting the echoes 

of sound that are reflected by distant objects.  Cetaceans use echolocation to detect and 

catch prey and to observe the environment around them.  Bottlenose dolphins make 

echolocation clicks of 50 to 130 kHz (Au, 1993), whereas porpoises produce 

echolocation clicks in frequencies of 110 up to 150 kHz (Kamminga and Wiersma, 

1981).   

Many cetaceans produce low frequency calls that theoretically could travel great 

distances.  It has been suggested that mysticete whales, for example, use low frequency 

calls to navigate and orientate in a way similar to echolocation (Norris, 1969; Payne and 
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Webb, 1971).  Such a form of direction-finding would seem essential for navigation on 

their long migrations.  

Cetaceans communicate using acoustic signals within and between species.  Their 

vocalizations have a variety of functions such as intra-sexual selection (maintain social 

orders within the sexes such as hierarchies of dominance and territory maintenance), 

inter-sexual selection (vocal calls to demonstrate fitness), mother-calf cohesion 

(communication to maintain social bonds between mother and calf), group cohesion 

(vocalization to co-operate, co-ordinate group members for foraging), individual 

recognition (calls that allowing individuals to identify relatives from alliances, and aid to 

coordinated behaviors), and danger avoidance.  

Beluga whales live in Artic and sub-Artic waters.  Some migrate south to warmer 

water during summer. They are a highly social species and congregate in pods (social 

group) of 2 – 25 whales, with an average pod size of 10 whales, consisting of both males 

and females or mothers and calves. 

Beluga whales are one of the most vocal of the toothed whales (odontocentes).  

They produce a wide range of variable underwater calls that have been shown to vary 

according to their behavioral context (Sjare and Smith, 1986b; Bel’kovich and Sh’ekotov, 

1992).  Sjare and Smith (1986a, 1986b) divide wild beluga vocalizations into tonal calls 

(whistles), pulsed calls (clicks and pulsed tones) and noisy calls.  Whistles or tonal calls 

are classified further by their frequency modulation and sequence of call components.  

They are sub-divided further into 7 contour types. The rate of vocalizations is influenced 

by changes in behavioral activities.  
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It is believed that beluga population is especially susceptible to the effect of 

human-made noise due to the large amount of shipping traffic, aircraft flight and sonar, 

drilling, construction and recreational boating (Sonstrom, 2007).  

The vocalizations being examined in this research were made by a population of 

beluga whales residing in the St. Lawrence River estuary, Quebec, Canada.  The data was 

selected from four study sites, namely, Baie St. Marquerite (BSM),  Saguenay (SAG), 

Allouette (AL) and Channel Head (CH).  They were recorded in July and August over the 

course of six years.   

Repertoire recordings were taken from three different social groups. One set of 

vocalizations were from female beluga, another were from male beluga, both of which 

inhabit the Saguenay (SAG) area; and one vocalization set were from unknown social 

group residing at Channel Head (CH) location.   

Table 4.1 shows seven data sets of beluga and total number of available 

vocalizations.  

 

No Year Data name Social group Total number 

of vocalizations 

1 

2 

3 

4 

5 

6 

7 

1996 

1996 

2003 

2005 

2006 

2007 

2007 

Data96 

Data96a 

Data03 

Data05 

Data06 

DataVM 

DataVF 

N/A 

Wild adult male 

Wild adult female and young (BSM) 

Wild adult female and young (SAG) 

Wild adult and young (SAG) 

Captive male Vancouver aquarium 

Captive female Vancouver aquarium 

497 

659 

764 

  60 

130 

137 

  58 

 

Table 4.1. Beluga data sets used for the experiments 
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The acoustic data of wild beluga was collected with an omni-directional hydrophone and 

recorded on a Sony TCD-D8 digital audio tape (DAT) with 48 kHz sampling frequency 

and 16-bit quantization.  For more detailed information about this beluga data, readers 

may refer to Sonstrom (2007). 

The HMM-based clustering framework discussed here was used in Sonstrom 

(2007) to group similar vocalizations and to assess the social group identifications and 

breeding patterns of beluga whales in the St. Lawrence River estuary.  To better 

understand the framework and clustering methods used, a block diagram to cluster beluga 

repertoire data will be given before the results of the experiments.  

 

4.3. Methods 

Figure 4.1 shows block diagram to cluster beluga vocalizations.  

 

Figure 4.1. System block diagram  

 

The feature analysis module provides the acoustic feature vectors used to characterize the 

spectral properties of the repertoire data.  The dissimilarity index analysis element 

estimates the number of clusters K (in this case number of call-types) in the data; hidden 
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Markov model (HMM)-based k-model clustering groups data into K clusters,  and 

dissimilarity computation evaluates the clustering results.  

 

4.3.1. Feature analysis 

Features for beluga repertoire clustering consist of the Greenwood function cepstral 

coefficient (GFCC) features discussed in Chapter 2.  The vocalizations are segmented to 

construct quasi-stationary frames for accurate spectral estimation.  A windowing function 

is applied to each frame to reduce the artifact that would arise from performing spectral 

analysis on a non-windowed frame. For the beluga repertoire, vocalizations are 

Hamming-windowed with frame size 30 ms and step-size 15 ms.  

The appropriate Greenwood frequency warping constants are calculated using an 

approximate beluga hearing range of 100 Hz to 150 kHz as determined by Scheifele 

(2003).  The GFCCs are normalized using cepstral mean normalization (CMN) and 

variance normalization (CVN) to remove channel distortion in the cepstral domain and to 

avoid the further amplification of low-frequency noise.  Energy is not used due to 

recording variations.  Thirty-six element feature vectors are extracted.  They consist of 

cepstral coefficients along with delta and acceleration coefficients.  

 

4.3.2. Dissimilarity analysis 

The number of clusters in the beluga data sets is estimated from the cross-data 

dissimilarity analysis discussed in Chapter 2.  The method varies the number of clusters 

K from 1 to 15.  For each number of cluster K ∈ {1, 2, … 15}, the following steps are 

performed: 
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1. estimate the label distance of equation (2.40) by averaging across a 20-way split 

of the data (refer to  steps on dissimilarity analysis from Chapter 2). 

2. normalize the label distance with its respected random labeling distance using 

equation (2.42) 

The estimated number of clusters k = argmink (normalized label distance).  

 

4.3.3. HMM-based k-model clustering 

A hidden Markov model based k-model clustering discussed in Chapter 2 is employed for 

beluga repertoire clustering.  The assumption underlying an HMM-based method of 

clustering is that all repertoires that belong to a cluster are generated by the same HMM.  

This clustering algorithm is a hard clustering;  each iteration every beluga repertoire is 

assigned to a single cluster represented by an HMM.  The HMM parameter updates are 

influenced only by data items currently in the associated clusters.  

Assume that the number of estimated cluster K is known from the previous step, 

namely the dissimilarity analysis process. Given K initial HMMs 0

1λ , 0

2λ , . . ., 0

Kλ  the 

clustering algorithm proceeds as follows.  

 

Iteration t ∈ 1, 2, … 

1. Data assignment 

for each beluga repertoire Xi, assign data to the model of maximum likelihood 

where )|( 1−t

kiXL λ is maximal. 

2. Model estimation 
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calculate new parameters of  t

1λ , t

2λ , . . ., t

Kλ using data assigned to the models 

and using previous parameters 1

1

−tλ , 1

2

−tλ , . . ., 1−t

Kλ  

3. Termination 

Terminate the process if no label has changed. 

 

In the above process, the re-assignment of the repertoires employs the Viterbi algorithm, 

and the re-estimation of model parameters utilizes a Baum-Welch re-estimation 

algorithm.  

 

4.3.4. Cluster initialization 

A suitable model topology, including the number of states and the allowed transitions in 

the HMM as well as the number of initial clustering models, should be motivated by the 

application.  Generally, the topology remains unchanged during the training process 

(Knab et al., 2003). 

Since the clustering algorithm will converge only to a local maximum, the choice 

of the model’s initial parameters will have an impact on the maximum computed.  The 

simplest approach is to set the initial models based on the global mean and variance of 

each element of the feature vectors and then use K copies of that model after adding small 

random perturbations to the parameters of the K copies individually.  This approach, 

however, can easily lead to uneven cluster memberships, as some random model might 

have near zero probabilities of generating any repertoires in the data.  This research, 

therefore, employs maximum variance initialization (Al-Daoud, 2005) with modification 

for HMM-based clustering.  The algorithm for model initialization is as follows. 
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Algorithm : Cluster initialization 

Input  : random number R, number of clusters K 

Output  : K initial clusters 

Steps  : 

1. Random initialization 

Set a random number of clusters R.  Initialize R HMMs based on global 

mean and variance of the data samples  

2. Create loglikelihood matrix of data over R HMMs 

3. Compute the variance in each model 

4. Find the column (model) with maximum variance, sort in any order 

5. Divide the data-set of maximum variance into the desired number of 

clusters K 

6. Train an HMM λ for each subset. 

 

The k-model clustering in this research utilizes the maximum variance 

initialization discussed above.  The experiments vary the random number of initial 

clusters from 5 to 25, and then choose the best for the maximum variance initialization 

approach.  

Cluster models for the experiment are 15-state left-to-right HMMs with each state 

containing a single diagonal-covariance Gaussian.  The silence model before and after the 

vocalizations is built using the same topology.  The Hidden Markov Model Toolkit 
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(HTK) version 3.2.1 from Cambridge University (2002) is used with modification, to 

implement the HMM functionality.  

 

4.3.5. Result assessment 

The notion of dissimilarity can be used to assess the consistency of clustering results.  

The dissimilarity index computation to assess the consistency of clustering results is a 

generalization of the cross-data cluster dissimilarity analysis to estimate the number of 

clusters in a data set.  To implement this, the clustering algorithm is run 10 times on the 

same beluga data set using different initial conditions.  The average dissimilarity value is 

computed using equation (2.49).  The smaller the multi-run dissimilarity value ∈ [0, 1] 

the more consistent is the clustering algorithm across this data set.  

 

4.4. Results and discussion 

4.4.1.  Initial parameters 

Initially the dissimilarity metric is used for feature selection to find the best features for 

Beluga repertoire clustering in terms of overall dissimilarity.  Figure 4.2 shows 

dissimilarity results on three different features: the cepstral coefficients GFCCDA, the 

mean-normalization cepstral coefficients (GFCCDA-MN), and the variance-

normalization cepstral coefficients (GFCCDA-VN) across different number of clusters 

for beluga data06 (wild adult and young social group) data set. Of the three features, 

GFCCDA leads to the best performance. This feature is then selected for the rest of 

clustering procedure for beluga data sets. 
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Figure 4.2. The dissimilarity index values of the beluga data06  

from three different cepstral coefficient features  

 

Additionally, the dissimilarity index computation is employed for feature selection to find 

out the best initial number of random value R for variance initialization of the k-model 

clustering, as discussed in the previous section.  Table 4.2 presents the dissimilarity index 

values for differing number of initial R used for variance initialization over beluga data06 

data set.  Variance initialization with R = 10 yields the best dissimilarity index value.  

The k-model clusterings for beluga data then use R = 10 for their variance initialization 

value.   

No Variance Initialization 

(initial number of R) 

Dissimilarity  

value 

1 

2 

3 

4 

5 

5 

10 

15 

20 

25 

0.2387 

0.2111 

0.2165 

0.2521 

0.2354 

 

Table 4.2. The dissimilarity values for different variance initialization over beluga data06 
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4.4.2. The estimated number of clusters 

Figure 4.3 shows the use of the cross-data dissimilarity method to estimate the number of 

clusters k from four different beluga data sets.  A total of two repertoire clusters are 

assigned to the data96a, three clusters to the data96, five clusters to the data03, and six 

clusters to data05 and data06 (wild adult and young beluga repertoires).  

 

 

Figure 4.3. Cluster estimates for four different Beluga data sets. 

 

To illustrate the consistency of clustering results, Table 4.3 presents the 

dissimilarity values and their respected standard deviations from 10 separate clustering 

runs from 5 different beluga data sets.   
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 Data Number 

of clusters 

Dissimilarity value 

 

1 

2 

3 

4 

5 

data96a 

data96 

data03 

data05 

data06 

2 

3 

5 

6 

6 

0.026±0.003 

0.130±0.012 

0.473±0.046 

0.359±0.049 

0.211±0.019 

 

Table 4.3. The estimated number of clusters and dissimilarity values  

of 5 different beluga data sets 

 

Results indicate that the dissimilarity value has a significant range for the 

different data sets. It gives an almost perfect match (0.026) for data96a (wild adult social 

group), and a relatively high dissimilarity value (0.473) for data03 (female and young 

social group of BSM).  A dissimilarity value 0.026 means that for different runs 2.6% of 

the data are clustered inconsistently and 97.4% of the vocalizations are always assigned 

into the same clusters or groups.  A dissimilarity value 0.473 for data03 shows that 47.3% 

of the data are grouped inconsistently while 52.7% are clustered to the same groups for 

different runs.  

Inconsistent clustering runs as shown by a high dissimilarity value may indicate 

that there are a relatively large range of vocalization types in the data set with only a few 

example of each, so that data limitation prevents accurate grouping.   

 

4.4.3. The similarity of repertoire among different social groups 

As mentioned in the previous section, the objective of the study is to explore how the 

HMM-based framework might be utilized for beluga whale population structure 

assessment. The focus of this section is, therefore, to determine the relationship between 
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established beluga social groups as indicated by their vocalizations.  The study compares 

wild and captive beluga vocalizations to assess the characteristic of their social groups, 

and computes the loglikelihood distance to measure how similar their vocalizations are.  

The loglikelihood distance is calculated using Viterbi algorithm discussed in section 

2.2.1.2. A total of 984 vocalizations are used. They consist of 130 vocalizations from 

wild adult and young beluga (data06), 659 from wild male (data96), 137 from captive 

females (dataVF), and 58 from captive male belugas (dataVM) of Vancouver aquarium. 

Tables 4.4 – 4.10 represent the vocalization log-likelihood distances of wild and 

captive belugas. The log-likelihood tables show the similarity of vocalization groups 

expressed as distance metric values (per frame log-likelihood distance) from one cluster 

model (the row) to the vocalizations in another cluster (column).   

Table 4.4 indicates that vocalizations in cluster 1 of wild adult beluga (data96) are 

more similar to vocalizations in cluster 5 of wild adult-young (data06) than any other 

clusters; and vocalizations in cluster 2 are closer to vocalizations in cluster 3 of data06.   

 

 Wild adult-young belugas 

 C1 C2 C3 C4 C5 C6 

C1 -97.857 -99.582 -96.495 -100.65 -95.908 -98.466 

 

Wild adult 

belugas C2 -98.601 -100.16 -96.872 -101.03 -97.810 -99.176 

 

Table 4.4. Log-likelihood distance between repertoires of wild adult  

and wild adult-young belugas 

 

All wild adult-young beluga repertoires, meanwhile, fall within cluster 1 of wild 

adult male vocalizations (Table 4.5).  This may imply that this group of adult beluga has 
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a vocalization cluster (C1) that has characteristics unique to this group.  Group specific 

vocal repertoires are common to several different Cetacean species (Sonstrom, 2007).  

 

 Wild adult belugas 

 C1 C2 

C1 -102.037 -131.284 

C2 -116.042 -149.075 

C3 -110.204 -143.572 

C4 -112.668 -143.897 

C5 -118.543 -147.695 

 

 

Wild adult 

young  

belugas 

C6 -108.871 -139.212 

 

Table 4.5. Log-likelihood distance between repertoires of wild adult-young  

and wild adult belugas 

 

Tables 4.6 – 4.7 represent the similarity between wild adult-young and captive 

female repertoires.  Most vocalizations of the captive female are similar to the 

vocalizations in cluster 3 and 5 of wild adult-young (Table 4.6).  A large number of wild 

adult-young repertoires are closer to cluster 2 of the captive female repertoires (Table 

4.7). 

 Wild adult young belugas 

 C1 C2 C3 C4 C5 C6 

C1 -84.989 -85.285 -83.668 -85.966 -84.595 -85.323 

C2 -83.423 -83.982 -82.654 -84.676 -82.386 -83.914 

C3 -84.432 -84.862 -83.885 -85.271 -84.189 -84.785 

C4 -83.765 -84.018 -83.870 -84.175 -83.437 -83.885 

 

Captive 

female 

belugas 

C5 -82.319 -82.513 -81.182 -82.893 -79.575 -82.468 

  

Table 4.6. Log-likelihood distance between repertoires of captive female  

and wild adult-young belugas 
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 Captive female belugas 

 C1 C2 C3 C4 C5 

C1 -89.435 -89.940 -91.932 -92.658 -96.788 

C2 -90.332 -88.949 -91.651 -91.567 -105.783 

C3 -92.362 -91.224 -94.376 -94.561 -101.822 

C4 -92.777 -91.587 -94.604 -94.775 -106.272 

C5 -95.763 -94.409 -97.121 -97.227 -114.314 

 

 

Wild adult  

young 

belugas 

C6 -90.718 -89.111 -92.272 -92.257 -100.246 

 

Table 4.7. Log-likelihood distance between repertoires of wild adult-young  

and captive female belugas 

 

Tables 4.8 – 4.9 show the distance between captive male and female repertoires.  

Table 4.8 indicates that repertoires in cluster 1 of captive males are closer to cluster 5 of 

captive females, cluster 2 to cluster 3,  and cluster 3 to cluster 2.  All repertoires of the 

captive females, meanwhile, fall into cluster 2 of male belugas (Table 4.9). 

 

 Captive female belugas 

 C1 C2 C3 C5 

C1 -60.896 -61.663 -60.891 -59.646 

C2 -69.559 -69.470 -69.456 -69.876 

 

Captive 

male 

belugas C3 -79.406 -78.591 -79.935 -81.792 

 

Table 4.8. Log-likelihood distance between repertoires of captive male 

and female belugas 

 Captive male belugas 

 C1 C2 C3 

C1 -68.207 -67.724 -68.465 

C2 -67.245 -66.335 -67.169 

C3 -69.276 -68.857 -69.513 

 

Captive 

female 

belugas 

C5 -57.228 -54.340 -59.080 

 

Table 4.9. Log-likelihood distance between repertoires of captive female 

and male belugas 
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The likelihood distances shown in the previous tables measure how close group 

vocalizations are among each other.  The study is not only measure how close those 

vocalizations are, but also how separable those vocalizations are.  The following section, 

therefore, investigates a supervised group repertoire recognition utilizing labels assigned 

to the vocalizations during clustering processes.  The labeled vocalizations are split into 

training data used to train group vocalization models and test sets for evaluation.  

Tables 4.10 – 4.12  show the confusion matrices from the classification 

experiments of wild and captive belugas.  The confusion matrix gives the results of a 

classification experiment where the cluster models (the rows) are used to classify 

individual test vocalizations (the columns).  The numbers on the diagonal are the number 

of correctly classified vocalizations for each repertoire cluster.  Five fold cross validation 

is used.  The data is split into five approximately equal partitions and each in turn is used 

for testing and the reminder is for training.  That is, the experiment uses four fives for 

training and one five for testing, then repeats the procedure five times so that in the end 

every vocalization has been used exactly once for testing.   
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 Wild adult-young Wild adult  

 C1 C2 C3 C4 C5 C6 C1 C2 

C1 15 1 0 0 1 1 0 0 

C2 1 21 0 0 5 2 0 0 

C3 1 0 8 4 2 1 0 0 

C4 1 2 2 4 6 1 0 0 

C5 2 7 2 3 14 4 0 0 

 

Wild 

adult 

young 

C6 0 3 0 1 6 5 0 0 

C1 0 0 0 0 0 0 259 15 Wild 

adult C2 0 0 0 0 0 0 14 370 

 

Table 4.10. Repertoire classification results of wild adult-young and wild beluga data 

(Accuracy 88.78%) 

 

 Wild adult young Captive female 

 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 

C1 13 1 1 0 2 1 0 0 0 0 0 

C2 2 14 0 1 9 3 0 0 0 0 0 

C3 1 2 16 5 0 1 0 0 0 0 0 

C4 1 3 3 3 5 1 0 0 0 0 0 

C5 1 7 0 7 15 2 0 0 0 0 0 

 

 

Wild 

adult 

young 

C6 0 2 0 4 5 4 0 0 0 0 0 

C1 0 0 0 0 0 0 32 1 2 0 0 

C2 0 0 0 0 0 0 0 24 1 0 0 

C3 0 0 0 0 0 0 3 0 24 0 0 

C4 0 0 0 0 0 0 0 0 0 20 0 

 

Captive 

female 

C5 0 0 0 0 0 0 0 0 0 1 30 

 

Table 4.11. Repertoire classification results of wild adult-young  

and captive female beluga data (Accuracy 70.45%) 
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 Captive female Captive male 

 C1 C2 C3 C5 C1 C2 C3 

C1 32 1 2 0 0 0 0 

C2 2 20 3 0 0 0 0 

C3 2 0 25 0 0 0 0 

 

Captive 

female 

C5 0 0 0 30 1 0 0 

C1 0 1 0 2 5 0 0 

C2 0 0 2 1 0 27 0 

Captive 

male 

C3 0 0 0 0 0 0 9 

 

Table 4.12. Repertoire classification results of captive female and male   

beluga data (Accuracy 89.70%) 

 

The above matrices illustrate that each social group is different from one another 

and show that their vocalizations are separable.  The vocalizations of the captive belugas 

are selected from known animals under a specific behavioral context.  In the wild 

environment it is expected to observe more complex repertoires due to the beluga’s 

ecological constraints and survival needs such as vocalization to maintain pod cohesion, 

navigation, find prey and avoid predator.  As shown in the above results, the vocalization 

taken from a captive environment, therefore, are analyzed with more efficiency and 

clustered with higher accuracy.  

 

4.5. Summary 

This chapter shows how the HMM-based framework can be used to perform an 

unsupervised classification task to differentiate different vocal repertoires of different 

beluga whale social groups.  The approach consists of the GFCC feature analysis to 

extract feature vectors of beluga whale vocalizations, the dissimilarity analysis to 

estimate the number of different repertoires in the data sets, HMM-based k-model 
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clustering to group similar repertoires and dissimilarity value computation to assess 

consistency of the clustering results.  

The results show the reliability of the method to acoustically identify the 

established social structure of the beluga whale population in the St. Lawrence River 

Estuary.  The results also demonstrate the feasibility of the approach to assess, track and 

monitor social groups of the beluga whale population for potential conservation use.  
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CHAPTER 5 

HMM-BASED ACOUSTIC CENSUSING OF THE ORTOLAN 

BUNTING POPULATION 

 

5.1.  Introduction 

Individually distinct acoustic features have been observed in a wide range of vocally 

active animal species, for example: cetaceans (Janik et al., 1994), bats (Master et al., 

1995), and primates (Butynski et al., 1992).  Within birds, the presence of vocal 

individuality has been shown in the European Bitterns and Black-throated Divers (Gilbert 

et al., 1994), American Woodcock (Beightol and Samuel, 1973), Australian Kingfishers 

(Saunders and Wooller, 1988), and Tawny Owls (Galeotti and Pavan, 1991).  

The feasibility of using vocal individuality (vocalizations) to monitor habitat 

quality has been demonstrated. Peake and McGregor (2001) employed a statistical 

Pearson-correlation approach to identify corncrake vocal individuality and to estimate 

numbers of individuals in species. Holschuh (2004) used discriminant function analysis 

to explore vocal individuality of the saw-whet owl to monitor its habitat quality. Terry 

and McGregor (2002) suggest a different method to monitor and census male corncrake 

species.  They employ three different neural network models, namely, a backpropagation 

and probabilistic network to re-identify the members of the known population 

(monitoring task) and a Kohonen network to count a population of unknown size (census 

task).   
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The research presented here employs a well established automatic human speech 

recognition framework for the potential censusing and monitoring of animals.  Previous 

and current studies show the feasibility of a hidden Markov models (HMMs) – based 

method to automatically classify ortolan bunting song-types, to identify individual birds 

(Adi, Michael Johnson, 2004, 2006; Trawicki, 2005), and to cluster Beluga repertoires 

(Adi et al., 2008).  The objective of this chapter, therefore, is to develop a method that 

integrates tasks of vocalization recognition, individual identification, and vocalization 

and individual clustering − discussed in the previous chapters − to estimate animal 

abundance. The suggested framework is based on Hidden Markov Models (HMMs) 

commonly used in the signal processing and automatic speech recognition community.   

This chapter is organized as follows.  Section two gives an overview of some 

characteristics of the study population, the ortolan bunting Emberiza hortulana.  Section 

three introduces three possible scenarios for estimating the number of animals in a 

population, and discusses a method that combines the tasks of supervised classification 

and unsupervised clustering. Section four presents the experiment of each scenario, the 

results and some discussion.  Section five concludes the chapter.  

 

5.2. Ortolan bunting, Emberiza hortulana 

The ortolan bunting is a migratory passerine bird distributed from Western Europe to 

Mongolia (Cramp, Perrins, 1994). They winter in Africa.  The species inhabits open 

agricultural areas, raised peat bogs, clear-cut forest on poor sand, and cleared farmland 

and forest burn (Dale, Hagen, 1997; Dale, 2001b). 
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Ortolan buntings are monogamous birds. The females lay 3-5 eggs.  They are 

ground breeders and feeders. The nests are usually placed on the ground.  The diet 

consists of seeds obtained from farmland, some insects and other small invertebrates. 

Ortolan buntings are classified as endangered species (Tucker, Heath, 1994; 

Storkersen, 1999). This species has shown a major population decline both in individual 

numbers and in their distribution.  In Finland, Vepsalainen et al. (2005) studied their 

population density changes and environment associations in years 1984 – 2002.  They 

observed a population crash between 1990 and 1993 resulting in a 54% reduction in 

population density.  The decline continued steadily, giving a total density reduction of 

72% between years of 1984 to 2002.  The primary causes have been related to 

agricultural changes such as reductions in environmental heterogeneity and crop diversity 

and the consequent loss of breeding habitat.  Vepsalainen et al. speculated that the 

European-wide decrease in the ortolan bunting is probably also due to changes in 

migration and wintering areas. 

The Norwegian ortolan bunting, meanwhile, currently numbers approximately 

150 singing males and has shown decline over the past fifty years as well.  In years 1996 

– 2000 the decline rate was 8% per year (Dale, 2001).  The basic demographic 

parameters such as juvenile and adult survival, variation in habitat, mortality during 

migration, breeding success, nest losses, were within the normal range (Steifetten, 2006; 

Dale, 2001). Instead, the decline is most likely related to female-biased dispersal away 

from the population which results in many unpaired males and low population 

productivity (Dale 2001 a, b; Steifetten, 2006).  
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The ortolan bunting vocalizations being examined for this study were collected 

from County Hedmark, Norway in May of 2001 and 2002 (Osiejuk et al., 2003).  The 

male vocalizations were recorded on 11 out of 25 sites within an area of about 500 km
2
.  

The total number of males in the covered area of the years 2001 and 2002 was about 150. 

The ortolan bunting has a relatively simple song and small repertoire size of 

typically 2 – 3 song-types for each individual.  Song frequencies are in a range between 

1.9 kHz and 6.7 kHz. Songs of ortolan buntings are described in terms of their syllable, 

song-type and song variant.  In total, there are 63 different song types and 234 different 

song variants, composed of 20 different syllables.  

A syllable is a minimal unit of song production. A song is described by using 

letter notation, e.g. aaaabb or hhhhuff, where letters denote particular syllables. Although 

syllables of the same category might differ in length and frequency between individuals, 

they have the same shape on sonograms. 

 

 

Figure 5.1. Ortolan bunting syllables (after Osiejuk, 2003) 
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A song-type is a group of songs that consist of the same syllables arranged in the same 

order. For example: ab-type (aaabb), kb-type (kkkkkbb). 

 

Figure 5.2.  Time series and spectrogram of song-type ab 

 

 

Figure 5.3.  Time series and spectrogram of song-type kb 
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Songs of the same type, which differ only in the number of syllables within the 

songs, are termed song variant. For example, within song-type gb, many song variants 

might exists, e.g. gggb, ggbbbb, gggbb. The initial and final syllables may differ slightly 

in amplitude and frequency due to sound production mechanisms 

As described by Osiejuk (2003), these ortolan vocalizations were recorded 

between 04:00 and 11:00 am by using Telinga V Pro and Sennheiser ME 67 recorder. All 

recordings were transferred to a PC using 48 kHz/16 bit sampling. 

 

5.3. Methods 

5.3.1. Three scenarios in estimating bird population 

This research proposes three possible scenarios to estimate the number of animals in a 

population.  Scenario 1 assumes data of known species, including some training data with 

song-type labels and speaker labels.  Scenario 1 then estimates the animal abundance 

with integrated methods of song-type recognition, individual animal classification and 

individual animal clustering. Scenario 2 assumes that one has data sets of known species 

and available training data with repertoire labels, but without known labels of individual 

animals.  In this scenario the problem of a population estimate is addressed using joint 

repertoire classification and individual animal clustering.  Scenario 3 assumes that one 

has a known species data set without repertoire labels.  In this case automatic animal 

censusing is approached using joint repertoire clustering and individual animal clustering 

methods.   
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Figure 5.4 presents a block diagram of estimating bird abundance utilizing 

Scenario 1. Scenario 1 assumes the availability of the data of known species, some 

training data with song-type labels and another data set with bird labels.   

 

 
 

Figure 5.4.  Block diagram of estimating bird abundance using Scenario 1 

 

There are five tasks involved: song-type classification, bird recognition, bird 

clustering, bird matching and population size estimation.  Song-type classification trains 

repertoire models using a labeled song-type data set and classifies data into groups of 
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song-types.  In each song-type data set, there are exemplars with bird labels and some 

exemplars without labels. For labeled data, the study proceeds with bird recognition 

experiments to classify birds in the data, and bird clustering experiments to estimate the 

number of birds in the unlabeled data set.  Bird matching identifies birds present in both 

data sets.  Using the information of birds “marked” in the first data set, the number of 

birds “recaptured” in the second data set, and the number of birds present in both, the 

population size estimate computes bird abundance using a simple mark-recapture 

method.  

Figure 5.5 shows block diagram of estimating animal abundance using Scenario 

2.  In this scenario an HMM-based repertoire (or song-type) classification module trains 

song-type models using available labeled data sets and classifies unknown data into 

groups of song-types.  HMM-based clustering module estimates the number of animals in 

each song-type.  A population size estimate then computes the overall population.  
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Figure 5.5. Block diagram for bird population estimate using Scenario 2 

 

Figure 5.6 presents a block diagram of animal abundance estimate utilizing 

Scenario 3.  This scenario involves two processes: song-type clustering and individual 

animal clustering.  Due to unknown training data, the song-type clustering starts with 

creating initial song-type models using some presumed small data as seeds.  Using these 

initial HMM song-type models, the module groups data into K song-type clusters.  An 

individual animal clustering component then estimates the number of animals in each 

song-type cluster.  A population size estimate computes the animal abundance as a final 

result. 
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Figure 5.6.  Bird estimate abundance using Scenario 3 

 

The following section discusses in more detail the tasks involved in the above 

scenarios before the results of the experiments.  These tasks include song-type 

classification and individual identification (supervised tasks), song-type clustering and 

individual bird clustering (unsupervised tasks), and population size estimation.  
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individual bird, and recognition of unknown song-types or individual birds.  The hidden 

Markov models (HMMs) are utilized to model each of the different song-types and each 

of the individual birds.   

Figures 3.3 and 3.4 of Chapter 3 summarize the use of HMM for song-type and 

individual recognition tasks. First, a HMM is trained for each song-type or individual 

bird using a number of examples of that song-type or bird. This step estimates the model 

parameters (A, B, π) that optimize the likelihood of the training set for song-types or 

individual birds in the vocabulary. 

To recognize an unknown vocalization, the likelihood of each model generating 

that song-type or bird is calculated, and the most likely model identifies the song-type or 

bird.  

The features for song-type recognition consists of a feature vector that unites 

GFCC, energy, delta, acceleration and variance normalization as discussed in Chapter 3.  

For individual bird recognition, the study uses combined features of GFCC, energy, delta 

and acceleration. The repertoires are Hamming windowed with frame-size 3 ms and 

overlap 1.5 ms.  The Greenwood frequency warping constants are calculated using an 

appropriate ortolan bunting hearing range of fmin 400 Hz to fmax 7400 Hz as determined by 

Edwards (1943).  Twenty-six filter banks are spaced across that range.  For song-type 

recognition the GFCCs along with energy, delta and acceleration are normalized using 

variance normalization.  Thirty-nine element feature vectors are selected. 

The HMM for song-type and individual bird recognition are 15-state left-to-right 

HMMs with each state containing a single diagonal-covariance Gaussian.  The Baum-
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Welch expectation maximization algorithm is utilized to estimate the parameters and the 

Viterbi algorithm is employed for song-type and individual recognition.  

 

5.3.3. Unsupervised tasks: HMM-based song-type clustering and individual bird 

clustering 

HMM-based song-type clustering 

The song-type clustering approach employs an HMM-based k-model clustering as 

discussed in Chapter 2.  The method builds initial song-type models using some known 

small data as seeds.  Given K initial HMMs of song-type models 0

1λ , 0

2λ , . . ., 0

Kλ , the 

clustering proceeds as follows. 

 

Iteration t∈ 1, 2, … 

o Data assignment:  

for each song-type data Xi, assign data to the model of maximum likelihood, 

namely )|( 1−t

kiXL λ  is maximal 

o Model estimation: 

calculate new parameters of t

1λ , t

2λ , . . ., t

Kλ using song-type data assigned to the 

models and using previous parameters 1

1

−tλ , 1

2

−tλ , . . ., 1−t

Kλ   

o Termination: 

Terminate if no labels have changed.  

 

The data assignment of the above process employs the Viterbi algorithm, and the 

model estimation utilizes a Baum-Welch re-estimation algorithm. 
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Features for song-type clustering consist of features that combine GFCCs, energy, 

delta and variance normalization.  The song-type data are Hamming windowed with 

frame size 3 ms and overlap 1.5 ms.  The ortolan bunting hearing range of 400 Hz to 

7400 Hz is used to calculate the Greenwood frequency warping constants.  Thirty-nine 

element feature vectors are extracted.  The HMM for song-type models are 15-state left-

to-right HMM with each state containing a single diagonal-covariance Gaussian.  

 

HMM-based individual bird clustering 

The goal of this process is to estimate the number of birds in each song-type data set.  

The clustering method employs two methods of estimating the number of birds in each 

song-type, dissimilarity analysis and deltaBIC analysis. 

 

Dissimilarity analysis 

In the dissimilarity analysis approach, the number of birds is estimated by using the 

cross-data dissimilarity analysis discussed in Chapter 2. The method varies the number of 

clusters K from 1 to a prespecified maximum.  For each number of cluster K ∈  { 1, 2, 

…} it performs the following steps: 

1. Estimate the label distance of equation (2.40) by averaging 20 times split of the 

song-type data (cf. dissimilarity analysis in Chapter 2) 

2. Normalize the label distance with its respected random labeling distance value 

using equation (2.42) 
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The estimated number of birds in a song-type data set is extracted from the value 

of K that results in the smallest value of the dissimilarity indices. 

 

DeltaBIC analysis 

As mentioned in Chapter 2, this approach employs a similarity measure between two 

probability density functions estimated by Gaussian mixture models.   

DeltaBIC analysis starts with over-clustering of the data sets and iteratively 

merges clusters and retrains a new cluster until no possible pair of clusters is left.  The 

new merged cluster is represented by a GMM that has a number of mixtures equal to the 

sum of mixtures of the individual clusters.  The distance measure, referred to as deltaBIC 

is formulated using equation (2.43).  The approach finds and merges a cluster pair that 

gives the largest deltaBIC value. 

The procedure of the deltaBIC analysis is as follows.  

1. Over cluster the data 

Initially cluster song-type data into classes greater than the expected number of 

birds in the data set. This experiment employs uniform segmentation of the data 

set, and train initial GMMs using data assigned to each initial clusters.  

2. Cluster comparison and merging 

Search for all possible candidate pairs satisfying deltaBIC > 0, and select the best 

pair. Merge pair, and train GMM of new merged cluster using samples assigned 

to that cluster. 

3. The cluster comparison and merging are repeated until no possible pair of cluster 

is left. 
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Feature extraction 

Features for individual bird clustering consist of features that combine GFCCs, energy, 

delta and acceleration discussed in Chapter 3.  The repertoires are Hamming windowed 

with frame-size 3 ms and overlap 1.5 ms.  The Greenwood frequency warping constants 

are calculated similar to the experiments for song-type classification using an ortolan 

bunting hearing range of 400 Hz to 7400 Hz. 

The initial individual bird models are 15 mixture GMMs.  Thirty-nine element 

feature vectors are employed as the main features.  The implementation is done in HTK, 

using a single-state HMM with a GMM observation model.  

 

5.3.4. Population size estimate 

Bird matching 

In Scenario 1, it is necessary to learn individual bird models on one data set and then 

perform speaker identification and speaker clustering on a second data set. This study 

implements this bird matching using the speaker verification approach used in the field of 

human speaker recognition.  Figure 5.7 shows the scheme for bird matching or bird 

verification.  

 

Figure 5.7. Individual bird verification system 

 

X Feature extraction 

bird-specific 

Bird individual 

models B 

Bird impostor 

model nonB 

log P(X|B) – log P(X|nonB) 

 

Accept/reject Data set 2 

Data set 1, training 

with bird labels 
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Bird models B are created from the training data set, using known individual 

labels.  An HMM is trained for each individual bird using the number of examples 

assigned to them.  Using the universal background modeling approach, the method also 

builds an impostor model trained over all samples in the data set.  

As mentioned in Chapter 2, a speaker verification system implements a likelihood 

ratio test to discriminate whether the vocalization comes from the claimed bird or from an 

impostor (non claimed bird).  Bird matching verifies the hypothesis that new bird Bn is 

the presumed bird B if  P(B|X) > P(nonB|X).  By using equation (2.25) of Chapter 2 this 

expression becomes:  Bn = B if 

 

 log P(X|B) – log P(X|nonB) > ∆     (5.1) 

The above equation states that the identity of bird Bc is accepted or validated when the 

difference is above the threshold.  In this study the method selects the threshold as a 

positive value above zero.  

 

Population size estimate – mark recapture model 

Scenario 1 addresses the bird abundance estimation problem using the maximum 

likelihood estimation (MLE) framework of a mark-recapture model. A two sample mark-

recapture involves one session of catching and marking, and another session of 

recapturing.  In the context of this study, catching means recording bird vocalizations, 

and marking means labeling the vocalizations. 

 The process of labeling and recapture or re-labeling involves tasks of supervised 

recognition, unsupervised clustering and bird matching discussed in the previous 
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sections.  The previous steps, therefore, provide the number of birds (u1) in one data set, 

the number of birds (u2) in the second data set, and the number of birds present in both 

data sets (m2).    

Given the observed data u1, m2 and u2, the likelihood of population estimate is 

computed using equation (2.72) discussed in Chapter 2 as follows: 
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   (5.2) 

 

In the above equation one needs to plot and evaluate the likelihood as a function of N and 

p (the probability to capture, record vocalizations).  The N and p where the likelihood 

function achieves its maximum value is the maximum likelihood estimation of N.  

 

Population size estimate – using reference bird distribution 

The method in Scenario 2 estimates the number of birds in the population based on a 

known repertoire distribution of known birds for each song-type.  From the available 

known data sets, the approach lists all individual birds and computes the total number of 

birds in the data sets.  For each song-type the number of birds that make that song is 

estimated using clustering methods, and, using the known percentage of birds that make 

that song, the total number of birds in the population is calculated as follows: 

Total number of birds = (number of birds estimated/known percentage of bird)×100 %. 

 

Population size estimate – upper and lower bound  

When the known distribution of birds singing each song-type is available, Scenario 3 

estimates the total number of birds in the population based on that reference distribution, 
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as described in the pervious paragraph. Otherwise, the lower bound of the population 

estimate is computed from the maximum number of birds in the data sets, and the upper 

bound is the total number of birds estimated from the song-type data sets.  

 

5.4. Experimental results and discussion 

5.4.1. Estimating bird population using Scenario 1 

Scenario 1 estimates bird abundance by utilizing the known information of the species, 

some training data with song-type labels and another data set with bird labels.  As 

mentioned in the previous section, there are five tasks involved, namely, song-type 

classification, bird recognition, bird clustering, bird matching and population size 

estimation.  Song-type classification trains repertoire models using a labeled song-type 

data set and classifies data into groups of song-types.  In each song-type data set, there 

are exemplars with bird labels (in this case data 2001) and some exemplars without labels 

(data 2002). The study proceeds with bird recognition experiments to classify birds in the 

labeled data, and bird clustering experiments to estimate the number of birds in the 

unlabeled data set.  Bird matching identifies birds present in both data 2001 and data 

2002.  Using the information of birds “marked” in data 2001, the number of birds 

“recaptured” in data 2002, and the number of birds present in both, the population size 

estimate computes bird abundance using a simple mark-recapture method.  

 

Song-type recognition 

Speaker independent song-type classification experiments are performed across the 

fourteen song-types selected from data 2001 and data 2002.  Each song-type contains 
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multiple song-variants.  The experiment employs data 2001 as a training set for data 2002 

and vice versa. 

Table 5.1 shows the confusion matrix for song-type classification of data 2001 

using GFCC, energy E, delta D, acceleration A and variance normalization features.  

Each row represents the labeled class of song-type while the column represents the 

classification given by the system to each song-type.  The numbers of the diagonal are the 

number of song-types correctly classified. 

 

 ab c cb cd eb ef gb guf h hb hd huf jd kb 

ab 1467 1 157 17 0 0 0 0 1 10 1 0 0 135 

c 0 25 0 10 0 0 0 0 0 0 1 0 0 0 

cb 21 2 550 31 0 0 144 0 2 7 3 1 0 2 

cd 0 1 11 422 0 0 0 0 0 0 10 0 0 3 

eb 0 0 11 0 202 2 0 0 0 0 0 0 0 0 

ef 0 0 0 1 62 117 0 0 0 0 0 0 0 0 

gb 0 0 29 0 0 0 477 0 0 3 0 1 0 1 

guf 0 0 0 0 0 0 1 109 0 0 0 1 0 0 

h 0 0 0 0 0 0 0 0 128 0 1 0 0 0 

hb 0 0 1 0 0 0 0 0 0 18 1 5 0 0 

hd 0 0 0 0 0 0 0 0 0 4 55 3 0 0 

huf 0 0 0 0 0 0 0 0 0 0 0 87 0 0 

jd 0 0 0 0 0 0 0 0 0 0 0 0 124 0 

kb 0 0 0 0 0 0 0 0 0 0 0 0 0 137 

 

Table 5.1. Song-type recognition result of data 2001 (Accuracy 84.86%) 

 

84.86 % of the data are correctly classified. The matrix indicates that song ab and 

cd in data 2001 are difficult to recognize.  The syllable characteristics of song ab are 

easily misclassified as cb or kb song-types.  In the cb song-type, meanwhile,  many 

samples are recognized as song-type gb.   

Table 5.2 shows the confusion matrix for classification of data 2002.  The method 

is able to recognize correctly 89.59 % of the data set.   
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 ab c cb cd eb ef gb guf h hb hd huf jd kb 

ab 1561 3 24 1 0 0 1 0 0 5 0 0 0 9 

c 0 53 1 11 0 0 1 0 2 0 0 7 0 0 

cb 1 2 706 11 0 0 85 1 0 2 0 2 1 1 

cd 0 0 9 434 0 0 0 0 0 0 0 0 5 0 

eb 1 1 4 0 384 11 1 0 0 0 0 0 0 0 

ef 0 0 0 0 0 57 0 0 0 0 0 0 0 1 

gb 3 1 19 1 0 0 320 5 0 3 0 0 0 37 

guf 0 0 2 0 0 0 1 130 0 0 0 6 0 0 

h 0 32 44 0 0 0 3 0 138 27 0 0 0 17 

hb 0 0 0 0 0 0 0 0 0 32 0 0 0 1 

hd 0 0 0 0 0 0 0 0 0 5 8 3 0 0 

huf 0 2 7 41 0 0 0 1 0 2 22 285 0 1 

jd 0 0 1 2 0 0 0 2 0 0 0 0 47 0 

kb 0 1 0 0 0 0 0 0 0 0 0 0 0 87 

 

Table 5.2. Song-type recognition result of data 2002 (Accuracy 89.59%) 

 

The classification result indicates a similar trend to data 2001.  Some samples of song ab 

are misclassified as cb, and song cb has similar acoustic characteristics with song-type 

gb.  In addition, the matrix shows the similar acoustic characteristic of song-type h with 

song-types c, cb and hb.  It is worth noting that perfect song-type separation is not 

necessarily needed to do the larger task of counting individuals.  

 

Bird clustering 

Here we examine the two most common song-types of the ortolan bunting, namely, song-

type ab and cb to estimate bird abundance from their data sets.  The study splits data ab 

and cb into data of years 2001 and 2002 and uses data 2001 for building bird models.   

The number of birds in the 2002 song-type data set is estimated using the 

deltaBIC analysis discussed in the previous chapter.  In song-type ab the number of 

initial clusters is 49 and deltaBIC value reaches its peak at iteration 14, where each 
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iteration involves reducing the number of clusters by one.  The estimated number of birds 

in that song-type is, therefore, (49-14) or 35 birds.  

Figure 5.8 shows the accumulative deltaBIC value as a function of the number of 

birds in data ab and cb year 2002.  The estimated numbers of birds in song ab and cb are 

35 and 22 respectively.  

 

 

Figure 5.8.  DeltaBIC analysis of song-type ab and cb of birds 2002 

 

Bird matching 

The next step is to identify birds present both in data 2001 and data 2002.  The bird 

matching method discussed in section 5.3.3 is used to implement a likelihood ratio test to 

discriminate whether the vocalization comes from a known bird or from an unknown one.  

Using equation (5.1) the identity of a bird is accepted if the difference between log 

P(X|B) and log P(X|nonB) is above a threshold of some positive value.  

Tables 5.3 and 5.4 present the acceptance value of birds in cb and ab data sets.  

For song cb 8 birds in data 2002 (birds 1, 2, 10, 13, 14, 15, 16, and 22) are verified as 
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bird 3 in data 2001. Bird 20 of data 2002 is identified as bird 5 in data 2001, bird 5 is 

verified as bird 6, bird 7 as bird 7, birds 3, 4, 9 and 19 are verified as bird 11 of data 

2001, and bird 18 of data 2002 is identified as bird 12 in data 2001.  Thus there are six 

birds present in both data 2001 and 2002 of song-type cb.  

 

  Birds in song-type cb 2001 

          1              2            3              4             5             6              7         8             9             10            11           12            13 

 

 

 

 

 

 

Birds 

in song 

cb 2002 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

   -6.1911   -4.8384    0.2598   -4.8071   -4.8664   -1.7287   -1.4306 

   -3.1360   -2.2224    1.0759   -3.5349   -3.7813   -2.4249   -1.1016 

   -1.2931   -4.0089   -0.9428   -7.4533    0.5253   -5.3972   -5.5260 

   -1.7191   -4.5681    0.1981   -7.0703    0.3497   -5.6525   -5.4115 

   -3.7740   -3.0045   -0.9646   -3.2053   -2.8519    0.1312   -1.1781 

   -4.1879   -3.8325   -2.2324   -2.5864   -1.4738   -2.3203   -1.7527 

   -4.0524   -3.7983   -0.1179   -1.9972   -3.6972   -3.7014    0.0847 

   -1.6285   -1.0683   -2.5166   -3.7007   -1.7817   -2.0835   -2.3154 

    0.4203   -3.9631   -3.2250   -6.2160   -0.4092   -4.9076   -3.0624 

   -6.1358   -4.7771    0.5048   -2.9390   -5.8793   -0.0643   -0.9827 

   -6.0416   -5.6546   -4.8061   -1.5755   -1.3735   -3.8146   -1.4443 

   -3.1280   -3.3624   -0.9467   -3.5546   -3.8155   -2.6841   -1.1312 

   -5.5911   -4.8649    0.2842   -6.4990   -4.7271   -4.2375   -2.6389 

   -6.4177   -4.8428    0.1138   -5.4141   -4.8679   -3.0886   -2.9369 

   -5.5897   -6.7359    0.1789   -3.8895   -4.4871   -1.3617   -2.4674 

   -3.1855   -5.3260    0.6257   -4.6915   -3.3572   -2.0442   -1.1992 

   -5.0415   -6.5233   -2.2900   -1.9306   -4.1976   -4.9813   -1.2144 

   -5.8263   -6.6272   -4.4404   -2.7344   -0.0812   -2.7804   -2.1755 

   -1.8148   -1.8384   -1.4369   -3.8289   -1.8039   -3.3647   -1.9384 

   -0.9310   -3.3875   -4.1278   -3.6522    0.4725   -4.5987   -1.8132 

   -3.6516   -4.8461   -0.7648   -2.9481   -3.1399   -3.7093   -0.2985 

   -4.6355   -4.2748    0.4865   -2.9744   -3.8810   -3.0470   -0.1036 

 

   -2.2258   -7.4660   -6.6986   -2.0243   -3.5749   -4.4040 

   -2.9164   -5.1645   -3.5034    0.0294   -4.0007   -4.9570 

   -2.3992   -7.3673   -6.3985    0.7298   -2.5238   -7.1605 

   -3.0178   -6.9223   -5.9974    1.1603   -3.5598   -7.2065 

   -1.4876   -4.4815   -4.4405   -2.4751   -3.5888   -1.6194 

   -1.4110   -4.8890   -5.3197   -1.9983   -2.9655   -2.9405 

   -1.5080   -5.6273   -6.7853   -1.0934   -3.2686   -4.7191 

   -1.9211   -4.3459   -4.5966   -0.9438   -3.1081   -2.8231 

   -3.7383   -5.5757   -4.7141    0.8304   -4.6439   -6.6938 

   -2.1916   -7.4385   -6.1976   -2.9593   -5.2991   -4.8353 

   -1.3929   -6.0052   -7.2179   -4.3271   -1.7333   -4.4404 

   -3.4759   -1.5937   -4.5810   -1.0143   -4.8189   -4.4083 

   -1.0592   -7.7188   -6.7524   -0.0592   -3.8018   -6.1107 

   -2.7645   -6.2715   -7.2595   -0.6921   -4.7532   -5.7999 

   -4.0671   -6.9669   -1.7588   -3.1082   -6.2582   -5.5221 

   -3.6259   -5.3410   -1.8490   -2.0575   -5.4783   -5.9606 

   -3.6470   -4.0607   -7.0770   -2.6779   -6.1275   -5.9435 

   -0.2400   -7.9769   -7.7126   -4.6130    0.1282   -4.1389 

   -3.0285   -4.5124   -3.7390    1.1541   -3.6040   -4.5305 

   -1.5103   -4.6590   -5.4152   -1.8644   -3.8411   -4.7288 

   -1.6854   -4.7744   -6.5691   -1.6969   -3.7253   -4.4330 

   -1.6721   -6.2508   -7.0564   -1.7838   -3.6584   -5.1683 

 

 

Table 5.3. Birds present both in song cb 2001 and 2002 

 

Using similar computation of song cb, for song ab overall there are ten birds present both 

in data ab 2001 and 2002.  
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  Birds in song-type ab 2001 

          1            2              3             4              5             6             7              8         9            10              11           12           13           14          15           16 

 

 

 

 

 

 

 

 

 

 

 

Birds  

in song- 

type ab 

2002 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

    3.3287   -4.5346   -2.3496   -0.5471   -2.0251   -0.4868   -1.2572   -6.0190 

   -4.9521   -0.4120    3.6250   -0.6869   -7.7675   -6.1197   -6.6364   -7.9153 

    0.0094   -4.9794   -3.0445   -2.0347   -2.8274    1.2987   -0.6014   -6.1907 

   -3.5455   -5.2913   -5.0752   -4.5992   -4.2910    0.0136   -0.7237   -5.4962 

   -1.9018   -6.1351   -5.4354   -4.4011   -3.4983    0.6552   -0.4045   -6.4261 

   -1.2089   -6.6477   -4.8173   -4.2969   -4.2304    2.8198    1.0148   -7.9238 

    1.0211   -3.6294   -0.7787    1.3923   -1.9047   -0.1691   -1.9307   -6.1673 

    1.7924   -4.8827   -3.0877   -1.1272   -3.3325   -0.0846   -1.6708   -5.9100 

   -3.1862   -3.2293   -6.0335   -3.8716   -4.7666   -1.6365   -0.5956   -3.5215 

   -1.0110   -2.0601   -4.1320   -1.8446   -3.5936    0.2727   -0.6778   -5.1737 

    0.0344   -3.1517   -2.4113    0.2726   -0.2110   -0.1096   -1.2683   -5.5885 

   -0.0240   -3.6585   -2.2180   -0.2363   -0.5949    1.6129   -1.1999   -5.7723 

    0.5747   -0.6984   -1.5701   -0.8911   -0.7810   -0.1473   -0.9784   -3.5688 

    0.2603   -4.3335   -4.2428   -2.0385   -0.3846   -1.2120   -1.3088   -2.3805 

   -3.7994   -3.8400   -5.6874   -3.9816   -6.3213   -6.6651   -3.7751   -0.0810 

   -3.1322   -4.3712   -4.3078   -3.1597   -5.1229   -5.7386   -2.4056   -3.1253 

   -1.5812    0.6358    1.4078    0.6350   -3.1697   -3.0178   -3.8149   -5.4931 

   -1.8981   -0.5290   -4.2339   -1.5999   -2.7318   -3.0345   -1.7407   -1.4410 

   -4.3723    2.5562   -0.5004   -1.4817   -5.5748   -5.4254   -5.3073   -1.6533 

   -3.1586   -4.4308   -4.7372   -3.5264   -3.7864   -3.9308   -3.2444    1.6347 

   -0.6836   -5.3612   -5.1553   -2.3066   -0.8731   -1.9086   -1.2863   -5.5397 

   -1.9576   -0.3462    0.4983   -0.8328   -5.7671   -4.5545   -4.2411   -4.2355 

   -1.0173   -3.1648   -0.9525   -0.0742   -1.7215   -2.1823   -2.8727   -4.0014 

   -5.5998   -0.6814    1.5259   -1.9446   -6.5365   -5.8078   -6.0025   -4.8316 

   -0.9918   -3.8087   -2.4317   -0.2722   -3.2170    2.2611    1.7144   -8.0419 

   -0.4822   -4.4073   -7.1259   -4.0923   -3.3212   -1.9584   -1.6182   -0.5671 

   -6.1037   -9.4225   -9.9198   -7.4261   -9.6247   -8.8753   -3.7258   -3.5603 

   -2.2932   -2.3024    1.7206    0.0829   -3.7148   -4.4141   -4.8811   -5.0697 

    0.2639   -3.3431   -0.7971    0.1313   -1.8326   -2.4744   -3.0561   -3.4950 

   -1.0945   -3.7550   -6.1084   -2.9030   -3.2488   -4.0070   -1.1507    0.3563 

   -3.9101    0.3551   -2.9815   -2.7914   -4.9732   -5.3486   -4.3406    2.6597 

   -4.0881   -5.7673   -5.0985   -4.7395   -3.7045    0.8830    1.1993   -6.0702 

   -1.1413   -1.4539   -1.3813   -1.2428   -1.8464   -1.3091   -1.2654   -2.8176 

   -1.2853    0.4026    0.9408    0.6735   -2.3300   -2.9114   -3.3500   -3.1851 

   -3.7747   -4.0904    0.0030   -2.4619   -5.8853   -4.5694   -4.0613   -6.2907 

 

   -3.4233    1.2589    0.6085   -4.2168   -2.2072   -1.9133   -3.5531    0.5817 

   -7.2320   -5.7446   -4.2239   -7.8955   -6.5088   -8.9694    0.5437   -3.9514 

   -4.2756   -0.6311   -2.0286   -2.2806   -1.6244   -5.5008   -3.5246   -1.1717 

   -3.5415   -2.7120   -4.5323   -3.3531   -4.8986   -5.3700   -4.2718   -4.5367 

   -3.8286   -1.7155   -2.6767   -1.7614   -4.5711   -6.3331   -3.8717   -3.7448 

   -4.5753   -2.9112   -1.3878   -1.6900   -1.7795   -7.4345   -5.2890   -3.1953 

   -3.5546    0.2653   -1.0236   -3.7799   -1.0390   -5.3754   -2.8322    2.1469 

   -4.3454   -0.6681    0.8958   -4.4677    0.2829   -1.8564   -5.0636   -1.3392 

   -4.8782   -2.0621   -0.9785   -2.7782   -5.5273    0.5998   -3.9299   -4.4922 

   -4.9468   -1.1128    0.5216   -3.7430   -1.1770    0.7507   -4.4769   -2.5578 

   -1.7013    0.1989   -1.1160   -2.2014    0.5235   -0.9032   -3.2479    0.4988 

   -2.1734    0.4137    0.1851   -2.3263    3.0963   -5.4559   -3.4986   -0.4444 

   -1.3635   -0.2817   -0.3451   -2.7524   -1.6754    0.1466   -2.1240   -0.5024 

   -2.5932    0.2046   -0.1786   -0.4489   -4.3443   -0.7042   -1.4955    0.4613 

   -6.4072   -4.8282   -3.4646   -5.0304   -8.2907   -0.1729   -1.3669   -4.5992 

   -4.3944   -5.2688   -3.2176   -4.2462   -6.1723   -0.2337   -2.3725   -3.2701 

   -4.5359   -2.7827   -1.7833   -4.9819   -3.0653   -4.5525   -1.3843   -1.7438 

   -3.7258   -1.9089    0.3039   -4.4479   -5.4692    2.2361   -1.5102   -2.6380 

   -5.9814   -4.6300   -1.9894   -6.4667   -6.4564   -3.4310    0.8972   -4.5663 

   -4.9425   -3.1223   -2.0139   -3.1887   -6.8852   -3.8172    0.6785   -2.9252 

   -4.6642   -1.8416   -2.2393   -1.3082   -4.0091   -4.6863   -3.4346   -1.6701 

   -5.0266   -3.0427   -1.9594   -6.6876   -6.1513   -5.9615    0.0556   -3.2228 

   -3.4120   -3.3416   -2.2934   -3.4086   -2.6438   -3.5942   -2.4093   -1.5531 

   -6.8483   -5.8448   -4.5502   -6.9106   -6.3754   -7.4118    1.2762   -4.3942 

   -0.2204    1.3616    0.2856   -3.1186    0.0957   -6.8707   -3.3246   -1.1432 

   -4.7150   -0.8172   -0.4958   -2.3677   -6.6990   -0.3718   -1.9094   -2.2977 

   -6.8016   -8.5687   -7.3220   -4.5637   -9.9283    0.2971   -5.4058   -8.7279 

   -4.8533   -2.2376   -2.6415   -7.3811   -6.7101  -10.0142    0.9841    0.6487 

   -4.1534   -0.7443   -0.4675   -4.6209   -4.5840   -4.9819   -0.3142    0.6251 

   -4.3200   -1.0520    1.4887   -5.2123   -7.0671    1.7815   -1.2872   -2.8376 

   -4.9551   -3.3794    0.1134   -6.2999   -7.3985   -1.3566    2.1058   -4.0645 

   -3.1682   -3.1623   -3.7159   -0.4160   -3.6112   -6.0371   -4.2771   -4.6447 

   -1.7521   -1.3891   -1.4810   -1.9419   -2.8377   -2.8126   -0.9178   -1.5366 

   -3.6146   -1.8583   -0.5685   -4.2055   -3.3303   -3.1504   -0.4176   -0.4902 

   -5.6708   -5.1204   -4.2093   -5.4901   -6.3505   -6.3590   -0.3940   -2.8681 

 

 

  Birds in song-type ab 2001 
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Birds  

in song- 

type ab 

2002 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

   -2.7923   -1.6403   -3.0591   -6.7815   -4.7261   -7.8531   -2.0805   -3.5705 

   -2.0376   -2.2067   -5.2913   -7.4954   -2.8914   -9.7565   -9.0457   -8.1580 

   -5.2247   -3.6440   -4.0929   -5.9322   -4.1864   -5.2039   -5.2712   -5.4196 

   -5.1233   -3.6771   -4.8497   -5.2574   -3.2070   -3.3678   -5.5137   -5.4987 

   -6.1144   -3.1654   -4.9712   -6.3216   -3.8467   -4.0983   -6.1435   -6.1479 

   -7.1146   -5.3112   -5.6374   -7.8321   -5.8273   -7.1518   -7.3920   -7.1876 

   -3.6899   -2.7908   -2.3053   -6.0012   -3.8403   -6.3174   -4.8673   -4.5437 

   -3.2411   -2.5536   -3.9053   -5.7310   -5.1282   -6.4710   -4.6349   -5.1753 

   -1.8455   -2.4912   -1.1234   -5.8704   -3.4359   -6.9937   -2.5286   -4.9308 

   -1.1357   -2.7229   -0.9435   -6.2785   -4.5890   -6.8538   -3.0701   -5.1090 

   -1.6483   -0.8298   -2.0244   -4.9952   -3.2050   -6.4724   -0.4568   -3.3489 

   -4.1665   -1.8507   -3.1598   -5.7330   -3.5536   -6.0135   -4.4469   -4.3100 

   -0.7789   -1.3345   -0.9350   -3.0500   -2.5263   -3.9892   -1.2855   -2.3181 

   -1.9173   -0.7236   -2.7449   -3.2978   -0.8224   -5.8155    0.1969   -1.8944 

   -2.6471   -3.7014   -4.0344   -1.8701    0.1249   -6.2848   -6.5507   -4.3598 

   -3.1631   -3.7504   -4.4927   -2.3630   -0.8995   -5.1289   -5.9696   -5.5419 

    0.0172   -0.0858   -1.7049   -4.4772   -1.8815   -6.5960   -4.6791   -4.1328 

    1.2393    0.1704   -0.0908   -0.8270   -1.6084   -5.9776   -2.1948   -0.5287 

    2.2713    0.9027   -1.0090   -2.4853   -0.7433   -7.7882   -5.9723   -3.6718 

   -2.4818   -0.9923   -4.0028   -2.6969    1.2838   -5.9721   -4.3791   -1.9087 

   -3.8795   -3.0501   -3.8656   -5.1885   -1.9652   -1.2854   -4.2751   -5.5415 

   -0.9801   -1.4752   -2.9202   -6.1894   -3.0200   -8.6173   -6.3088   -3.2036 

   -2.1282   -0.7388   -2.8500   -3.7747   -1.9827   -4.2796   -3.9759   -3.8650 

   -1.3732   -0.9504   -4.4278   -5.2030   -0.6779   -8.5000   -7.6258   -6.3328 

   -5.8946   -4.2496   -3.7794   -8.0400   -5.1079   -8.3196   -5.8430   -6.1686 

   -1.8006   -2.0307   -2.5506   -5.5144   -1.7825   -7.7498   -1.9315   -2.1270 

   -9.3605   -9.3018   -9.3371   -1.5090   -0.5475   -2.6629  -10.1466  -10.2727 

   -3.4477   -3.7094   -3.6824   -8.8101   -2.2805  -10.2468   -7.7272   -5.5513 

   -1.4567   -0.3237   -2.6499   -5.9330   -1.8140   -7.7726   -3.5277   -2.4592 

    0.4683    1.0680   -3.0696    0.3391   -2.0658   -7.0695   -1.2576    1.0670 

    2.1293    1.4649   -1.6046   -1.2768   -0.3556   -8.1088   -5.1827    0.4916 

   -5.8955   -5.2001   -5.3518   -6.0562   -4.2765   -2.6640   -6.0660   -5.9176 

   -1.9976   -1.5408   -1.8371   -2.9278   -1.5009   -3.0641   -2.3635   -1.6233 

    0.4596    0.6811   -1.3543   -3.5668   -1.1483   -6.0677   -3.2567   -1.9102 

   -4.0666   -3.5656   -5.5329   -6.2798   -3.9933   -7.0349   -6.7912   -5.8372 

 

   -3.5040   -2.6241   -5.4734   -7.0121   -5.2552 

   -3.7504   -7.6467   -5.0827   -9.4171   -9.1575 

   -3.2280   -2.6958   -5.8841   -4.0888   -5.4006 

   -0.8412    -0.597   -5.3498   -0.8700   -5.1403 

   -1.5502   -0.0347   -6.3072   -3.8663   -6.1023 

   -4.5096   -2.2655   -7.7117   -6.9752   -7.1363 

   -3.1478   -3.4209   -5.8994   -5.7616   -5.3782 

   -4.5549   -4.2908   -5.2379   -5.9918   -5.5970 

   -5.7443   -5.3948   -0.6914   -6.5628    1.1755 

   -5.7102   -5.8126   -2.2724   -6.6518   -0.5380 

   -4.2988   -3.2528   -3.3355   -5.8304   -2.3114 

   -3.0425   -2.6221   -5.2460   -4.9792   -5.4295 

   -3.4960   -3.1223   -1.9809   -3.6692   -1.8721 

   -3.2122   -1.3496   -1.9194   -4.8046    0.2969 

   -5.6859   -6.1894   -0.7238   -7.8444    0.9041 

   -6.0347   -6.0715   -2.4831   -7.3097   -1.1101 

   -2.6057   -4.3442   -2.4746   -6.0908   -4.8242 

   -4.3880   -4.5979    0.8254   -5.5180    1.3457 

   -4.6530   -6.4565    1.3518   -7.4744   -3.5349 

   -1.5665   -1.3814   -0.3351   -4.1094   -0.5097 

   -3.9522   -2.9016   -5.0994   -3.8953   -3.4664 

   -3.1979   -5.6024   -3.3872   -8.2076   -6.1127 

   -0.6947   -2.3845   -3.7211   -3.1303   -3.8731 

   -2.9226   -6.4605   -2.3652   -7.9844   -6.3930 

   -5.1369   -4.6430   -7.2151   -7.9335   -6.8711 

   -5.2776   -2.7167   -0.4983   -6.5843    0.8166 

   -9.1358   -8.6949   -5.7373   -9.2473   -0.9739 

   -2.1884   -4.4090   -5.9137   -9.2576   -8.9195 

   -0.3214   -1.4580   -4.0040   -5.7919   -4.8829 

   -4.9866   -3.1603    1.0873   -6.3450    1.0096 

   -3.8388   -5.0710    2.2317   -7.5654   -1.3952 

   -3.2138   -1.5243   -6.0198   -1.8921   -5.6420 

   -1.5231   -1.7482   -2.4367   -2.4563   -2.3022 

   -1.9724   -3.4532   -0.9946   -5.2808   -3.4540 

   -4.0981   -5.8541   -5.8285   -6.7684   -6.2757 

 

 

Table 5.4. Birds present both in song ab 2001 and 2002 
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Population size estimate 

Given the observed data of 29 birds in song ab 2001, 35 birds in song ab 2002 and 10 

birds “captured” both in ab 2001 and 2002; for the song ab data, the likelihood of the 

population estimate is computed using equation (5.2). 

The likelihood of bird estimation as a function of N (number of birds) and p 

(capture probability) is shown in figures 5.9 and 5.10.  The likelihood reaches its 

maximum value when p = 0.32 and N = 100.  This indicates that the estimate of bird 

abundance N̂  in song-type ab is 100 birds. 

 

 

Figure 5.9.  The likelihood function of birds in song ab – contour plot. 

The function reaches its maximum for p = 0.32 and N = 100. 
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Figure 5.10.  The likelihood function of birds in song ab – perspective plot 

 

 

The profile of the likelihood confidence interval is constructed using a variance of 

Chapman’s modified estimator (Seber, 1970) as follows: 
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where  n1 = number of birds captured in session 1, n2 = number of birds captured in 

session 2, and m2 = number of birds present in session 1 and 2.  

The 95 % confidence interval for bird estimation abundance is = N̂  ± 

1.96 )ˆvar(N .  For song ab data set, given that n1 = 29,  n2 = 35, m2 = 10 and N̂  = 100; 
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with  a 95% confidence interval, the estimate of bird abundance is equal to (100 ± 36) 

birds.  

Figures 5.11 and 5.12 show the likelihood of bird estimation as a function of N 

(number of birds) and p (capture probability) in song cb.   

 

 

 

Figure 5.11.  The likelihood function of birds in song cb – contour plot 

The function reaches its maximum for p = 0.36 and N = 49 
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Figure 5.12.  The likelihood function of birds in song cb – perspective plot 

 

 

For song cb, there are 13 birds present in data 2001 (= n1), 22 birds “captured” in data 

2002 (= n2) and 6 birds overlapped in data 2001 and 2002 (= m2).  The estimate of bird 

abundance for this data set with 95% confidence interval is equal to (49 ± 18) birds.  

 A 95% confidence interval for N = 100 (song ab) and N = 49 (song cb) is a set of 

estimates of N which would include the true N 95% of the time if the survey is repeated 

an infinite number of times.  This study has only one survey and one confidence interval, 

and does not know whether it is one that actually includes N or not.  But the study knows 

that it includes N with 95% probability.  

 In song cb, the likelihood function reaches its maximum for p = 0.36.  The 

confidence intervals are narrower than those in song ab because there is less uncertainty 
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about the number of population from a survey with p = 0.36 (in which on average 36% of 

the population is detected or recorded on one survey) from a survey with p = 0.32 in song 

ab (in which 32% of the population is recorded on one survey on average).  

 The mark-recapture method generally gives a reliable estimation of the size of a 

closed population when during the course of the study there are no gains or losses.  The 

study is, therefore, conducted over a short period of time when births, deaths, and 

movements are few. It is worth noting that the above computation is an example of 

incorrect methodology implementation that leads to erroneous population estimation 

results.  
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5.4.2. Estimating bird population using Scenario 2 

Utilizing data sets of known species and available training data with repertoire labels but 

unknown labels of individual animals, Scenario 2 explains the problem of population 

estimation using joint repertoire classification and individual animal clustering.  There 

are three tasks involved, song-type classification, individual bird clustering and 

population size estimation.  

 

Song-type recognition 

The song-type recognition experiment in Scenario 2 is precisely the same as the song-

type classification of Scenario 1.  The reader may refer to the results of the previous 

tables (Tables 5.1 and 5.2).  

 

Bird clustering 

Because in this second scenario we do not assume or use individual labels on the first 

data set, we need instead to do unsupervised individual clustering on each song-type.  

The method utilizes two approaches of estimation, namely, dissimilarity analysis – as 

discussed in Chapter 2 and implemented for beluga clustering in Chapter 4 –  and 

deltaBIC analysis, discussed in Chapter 2. The dissimilarity analysis is employed for 

some song-type data sets of data 2001.  Due to the inability of the dissimilarity analysis 

to estimate correctly the number of clusters or birds in big data sets, some data sets of 

data 2001 (specifically data sets for song ab, cb, cd and gb) and most of data 2002, 

meanwhile, use deltaBIC analysis for bird estimate.   
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DeltaBIC analysis starts with the over-clustered initial grouping using linear 

uniform segmentation.  The initial number of clusters is adjusted to the size of the data 

set.  The experiments try to maintain a minimum initial cluster member of 4 samples in 

order to have initial stable models. 

Figure 5.13 shows the accumulative deltaBIC values of data 2002 as a function of 

the number of birds in the data set. The number of birds in a song-type data set is 

estimated from the initial cluster and its peak iteration (the highest value of deltaBIC in 

the iterations). In song-type cb, for example, the number of initial clusters is 39 and 

deltaBIC value reaches its peak at iteration 17.  The estimated number of birds in song-

type cb, therefore, is equal to (39 – 17) or 22 birds.  

 

 

Figure 5.13.  DeltaBIC analysis of data sets from data 2002  

 

Tables 5.5 and 5.6 show the analysis results of data 2001 and 2002.   
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No Song-type Estimated number 

of birds  

Known number 

of birds 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

h 

hd 

huf 

kb 

34 

18 

7 

6 

3 

12 

2 

2 

2 

4 

2 

29 

13 

11 

6 

3 

11 

3 

5 

2 

3 

3 

 

Table 5.5. The estimated number of birds in some song-types of data 2001 

 

 

No Song-type Estimated number 

of birds 

Known number 

of birds 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

hb 

huf 

jd 

kb 

35 

22 

12 

15 

3 

15 

6 

3 

17 

3 

9 

34 

20 

9 

12 

2 

13 

4 

2 

20 

2 

7 

 

Table 5.6. The estimated number of birds in some song-types of data 2002 

 

The estimated number of birds in song-type eb, ef and hd of year 2001 are equal to the 

known number of birds in those song-types.  For some song-type data sets the analysis 

gives results slightly above the known number of birds in the data sets.  For other data 

sets, the results gives population estimates that are below the known number of birds in 

the respective data.   
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 As mentioned in the previous section, deltaBIC analysis starts with the over-

clustered initial grouping using linear uniform segmentation.  The linear segmentation, 

however, does not guarantee that the initial clusters consist of vocalizations from the 

same bird for each cluster.  Some clusters might have samples from different birds.  This 

makes it difficult for the system to build initial GMM models, and might prevent the 

system to cluster accurately, as seen from the above results.  

 

Population estimate 

As mentioned in section 5.3.3, the approach in Scenario 2 computes the estimate of the 

current local population from the available known bird distribution.  Tables 5.7  and 5.8 

list the number of birds that make songs in 11 common song-types in the data 2001 and 

2002. 

 

No. Song-type Number of birds Bird distribution (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

h 

hd 

huf 

kb 

29 

13 

11 

6 

3 

11 

3 

5 

2 

3 

3 

49.15 

22.03 

18.64 

10.17 

5.08 

18.64 

5.08 

8.47 

3.39 

5.08 

5.08 

 

Table 5.7. Bird distribution in data 2001.  
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No. Song-type Number of birds Bird distribution (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

h 

hd 

huf 

kb 

34 

20 

9 

12 

2 

13 

4 

2 

20 

2 

7 

41.98 

24.69 

11.11 

14.81 

2.47 

16.05 

4.94 

2.47 

24.69 

2.47 

8.64 

 

Table 5.8. Bird distribution in data 2002.  

 

The total number of birds in data 2001 is 59, and for data 2002 is 81.  Bird distribution is 

calculated using (number of birds in certain song-type/total number of birds) × 100%.  

 Utilizing the above distribution, Tables 5.9 and 5.10 give the bird local population 

estimate as follows. 

 

No Song-type Bird distribution (%) Bird estimate Population estimate 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

h 

hd 

huf 

kb 

49.15 

22.03 

18.64 

10.17 

5.08 

18.64 

5.08 

8.47 

3.39 

5.08 

5.08 

34 

18 

7 

6 

3 

12 

2 

2 

2 

4 

2 

69 

82 

38 

59 

59 

64 

39 

24 

59 

79 

39 

 Average 56 

 

Table 5.9.  Bird population estimate in data 2001. 
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No Song-type Bird distribution (%) Bird estimate Population estimate 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

h 

hd 

huf 

kb 

41.98 

24.69 

11.11 

14.81 

2.47 

16.05 

4.94 

2.47 

24.69 

2.47 

8.64 

35 

22 

12 

15 

3 

15 

6 

3 

17 

3 

9 

83 

89 

108 

101 

122 

93 

122 

122 

69 

122 

104 

 Average 103 

 

Table 5.10.  Bird population estimate in data 2002. 

 

Using their respected standard deviations, the correct populations for these groups are (56 

± 18) birds for data 2001, and (103 ± 18) birds for data 2002. 

As mentioned above, the local population estimations of data 2001 and data 2002 

are based upon the availability of known bird distribution on those data sets.  The 

estimates, therefore, do not reflect the animal abundance of the whole population. 

 Scenario 2, however, is easily extended to estimate the total population by 

detecting birds present both in data 2001 and 2002, and implementing a mark-recapture 

approach employed in Scenario 1. 

 As mentioned above, the mark-recapture method is a reliable means of estimating 

the size of a closed population when there are no gains or losses during the course of the 

study.  The study is, therefore, assumed to be over a short period of time when births, 

deaths, and movements are few. 

 The study may also implement distance sampling – discussed in Chapter 2 – for 

abundance estimation.  The important factor in distance sampling is the need to estimate 

detection distances.  The estimation of the detection distance can be accomplished 
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empirically or theoretically (Clapham, 2002). The empirical method involves measuring 

the actual location of vocalizing birds.  The theoretical approach consists of modeling the 

detection distance utilizing knowledge of source levels, propagation conditions and 

ambient noise.  

 Whenever the bird detection distances are available, Scenario 2 may proceed to 

estimate bird total population using the above distance sampling – a method that is 

commonly used in the biology community.  
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5.4.3. Estimating bird population using Scenario 3 

The previous scenarios assume data of known species including some training data with 

song-type labels and individual bird labels (Scenario 1), and data of known species with 

song-type labels (Scenario 2). Scenario 3 assumes that one has a known species data set 

only, without song-type or individual bird labels.  In this case automatic bird censusing is 

approached using joint repertoire clustering and individual bird clustering methods.  Due 

to unknown training data, the song-type clustering starts with creating initial song-type 

models using some presumed small data as seeds.  Using these initial HMM song-type 

models, the module groups data into K song-type clusters.  An individual animal 

clustering then estimates the number of animals in each song-type cluster.  A population 

size estimate computes the animal abundance as a final result. 

 

Song-type clustering 

As mentioned in the previous section, the clustering experiment builds initial song-type 

models using some small known exemplars referred to as seeds.  Dissimilarity analysis is 

then employed to assess the consistency of the results. 

To implement this, HMM-based k-model clustering is run 10 times on the same 

data set.  The equation (2.48) calculates the average dissimilarity value.  The smaller the 

multi-run dissimilarity value ∈ [0, 1] the more consistent is the clustering method across 

this song-type data set. 

Table 5.11 presents the dissimilarity values and their respected standard deviation 

from 10 separate clustering runs of two different ortolan bunting data sets, data 2001 and 

data 2002. 
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No Data Dissimilarity value Consistency (%) 

1 

2 

Data 2001 

Data 2002 

0.2085 ± 0.0705 

0.1664 ± 0.0863 

79.15 

83.36 

 

Table 5.11. The dissimilarity values and consistencies of data 2001 and 2002 

 

Results indicate different dissimilarity and consistency values of data 2001 and 

2002.  It gives 0.2085 ± 0.0705 dissimilarity value for data 2001. This means that for 

different clustering runs 20.85 % of the song-type data are clustered inconsistently and 

79.15 % of the vocalizations are always assigned into the same group.  A dissimilarity 

value of 0.1664 ± 0.0863 for data set 2002 indicates that 16.64 % of the data set are 

grouped inconsistently, while 83.36 % are clustered to the same group for different run.  

The previous results (Scenario 2) on song-type classification of the same data sets 

indicate the similar acoustic characteristics of song-type ab and kb, song-type cb and gb.  

It can be expected that this acoustic similarity may create inconsistency in the clustering 

experiments. 

 

Bird clustering 

The experiments to estimate the number of birds in song-type data sets utilize deltaBIC 

computation as a “stopping criterion.”  DeltaBIC analysis builds initial bird models by 

over-clustering data with linear uniform segmentation.  Similar to the approach in 

Scenario 2, the initial number of clusters is adjusted to the size of the data set.  To create 

more initial stable models, the approach maintains a minimum initial cluster member of 

each cluster to 4 exemplars. 
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Figures 5.14 and 5.15 show the accumulative deltaBIC values of data 2001 as the 

function of the number of birds.   
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Figure 5.14.  DeltaBIC analysis of data 2001 for song eb, ef, guf, h, and huf data sets 
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Figure 5.15.  DeltaBIC analysis of data 2001 for song ab, cb, gb, and kb data sets 
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Table 5.12 summarizes deltaBIC analysis results of estimating number of birds in 

data 2001.   

No Song-type Estimated number of birds Correct number of birds 

1 

2 

3 

4 

5 

6 

7 

8 

9 

ab 

cb 

eb 

ef 

gb 

guf 

huf 

h 

kb 

18 

11 

11 

5 

21 

4 

5 

8 

22 

23 

13 

7 

3 

21 

3 

3 

5 

20 

 

Table 5.12.  DeltaBIC analysis results of data 2001 

 

 

The results show a different trend than the similar data clustered using Scenario 2 

(Table 5.5).  The major difference is specifically in the estimation results of song-type ab, 

gb and kb.  Here our method estimates 22 birds in song-type kb, and 21 birds in gb, both 

higher than the birds in song ab. The similar acoustic characteristics of ab, kb and gb as 

observed previously may have resulted in many song-type ab exemplars that are clustered 

in song-type gb and kb and caused the higher number of birds. 

Figures 5.16 and 5.17 show the accumulative deltaBIC values of data 2002 for 

each song-type data. From these deltaBIC analyses the estimated number of birds in each 

song-type is summarized in Table 5.13. 
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Figure 5.16.  DeltaBIC analysis of data 2002 for eb, ef, guf, and h data sets 
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Figure 5.17.  DeltaBIC analysis of data 2002 for ab, cb, cd, gb, and kb data sets 
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No Song-type Estimated number of birds Correct number of birds 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

huf 

h 

kb 

15 

18 

15 

9 

5 

17 

6 

10 

13 

39 

18 

20 

32 

13 

2 

23 

11 

15 

9 

50 

 

Table 5.13.  DeltaBIC analysis results of data 2002 

 

The results indicate a similar trend to that shown in data 2001. The method 

estimates a high number of birds in the song kb data set.  The previous song-type 

clustering step most probably allocates many numbers of data from different song-types 

to kb due their similar acoustic characteristics.  For the song kb data set there are 

individual birds coming from song ab, cb, cd and gb data sets. This results in a high 

number of individual birds grouped together in that data set.  Furthermore, there are some 

individual with only a few samples each.  Bird166, for instance, has 1 sample 

vocalization, bird171 has 2 samples, and bird241 has 1 sample.  This data limitation 

prevents the system to create stable GMM models and as a result of an un-accurate 

clustering.  

 

Population estimate 

When the known distribution of birds in each song-type is available, the method 

estimates the number of birds in the population based on that reference.  Assume that this 

study has some known distributions of birds as shown in Table 5.9 (for data 2001) and 
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Table 5.10 (for data 2002).  Using these distributions, Tables 5.14 and 5.15 present the 

bird local population estimation as follows. 

 

No Song-type Bird distribution(%) Bird estimate Population estimate 

1 

2 

3 

4 

5 

6 

7 

8 

9 

ab 

cb 

eb 

ef 

gb 

guf 

huf 

h 

kb 

49.15 

22.03 

10.17 

5.08 

18.64 

5.08 

5.08 

8.47 

5.08 

18 

11 

11 

5 

21 

4 

5 

8 

22 

37 

50 

108 

98 

113 

79 

236 

98 

433 

 Average (top 4 distribution) 77 

 

Table 5.14.  Bird population estimate in data 2001 

 

No Song-type Bird distribution(%) Bird estimate Population estimate 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ab 

cb 

cd 

eb 

ef 

gb 

guf 

huf 

h 

kb 

41.98 

24.69 

11.11 

14.81 

2.47 

16.05 

4.94 

2.47 

2.47 

8.64 

15 

18 

15 

9 

5 

17 

6 

10 

13 

39 

36 

73 

135 

61 

203 

106 

122 

41 

81 

451 

 Average (top 4 distribution) 69 

 

Table 5.15.  Bird population estimate in data 2002 

 

For the above case, however, it is not advisable to implement the reference to the 

clustering results.  For data sets 2001 and 2002, song kb consists not only birds from kb 

itself but also birds from ab, cb, cd and gb data sets.  Birds in song huf of data set 2002 

cluster together with some birds from song cd data. Utilizing known distribution of birds 

in each song-type might create an over-estimation of the population.  
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Assuming that this “combined” distribution is unknown, the research selects the 

lower bound of the population estimate from the maximum number of birds estimated in 

the song-type data sets.  The upper bound, meanwhile, is the total sum of birds estimated 

in each song-type.  Table 5.16 presents the population estimate for data 2001 and data 

2002. 

 

Year Lower bound Upper bound Actual number of birds 

2001 22 105 50 

2002 39 147 71 

 

Table 5.16.  Population estimate for data 2001 and 2002 

 

For data 2001 the bird population estimate, then, has a lower bound of 22 birds 

and the upper bound of 105 birds.  For data 2002 the population estimate is between 39 

(lower bound) and 147 (upper bound) birds.  The estimates are, therefore, (22; 105) birds 

for data 2001 and (39; 147) birds for data 2002.  

 

5.5. Summary 

This chapter presents a new automated method to estimate animal abundance in a 

population, performed on a Norwegian ortolan bunting data set.  The method integrates 

supervised tasks of repertoire recognition and individual classification, unsupervised 

tasks of song-type clustering and individual animal clustering, dissimilarity analysis and 

deltaBIC analysis to estimate the number of birds in a data set.  The suggested framework 

is based upon hidden Markov models commonly used in the signal processing and speech 

recognition community. 
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The study discusses three scenarios. Scenario 1 computes the bird population 

utilizing an approach that starts with song-type recognition over the data set, followed by 

bird recognition and bird clustering of the song-type data. Bird matching step and 

population estimate procedure give final result of the population abundance.  Scenario 2 

explains the abundance estimate using joint repertoire classification and individual bird 

clustering approach.  Scenario 3, meanwhile, employs repertoire clustering and individual 

bird clustering methods for population estimation.  The experiments presented in this 

chapter show the applicability and effectiveness of the approach in estimating ortolan 

bunting abundance.   
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

Individually distinct acoustic features have been observed in a wide range of vocally 

active animal species.  The possibility of identifying individuals by their vocalizations 

may provide a useful tool to assess populations, including studying the population 

structure, animal abundance and density, seasonal distribution and trends.  

This dissertation has explored the problem of population assessment in a new 

way, by employing an automatic human speech recognition framework to assess marine 

mammal (beluga whale) population structure and to estimate animal abundance (ortolan 

bunting).  

The method has advantages over physical and visual marking techniques, being 

non-invasive, using less effort and cost, and being relatively fast and simple to apply.  It 

provides minimal disturbance and does not require the capture and handling of the 

animals.  This would be useful for species that are secretive, sensitive to disturbance and 

which cannot be readily caught physically or observed visually. 

This chapter summarizes main contributions of this dissertation (Section 6.1) and 

underlines several potential future directions in Section 6.2.  
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6.1. Summary of contribution and significance 

The contributions of this dissertation are as follows. 

1. Feature separation for animal repertoire analysis and for individual animal 

identification. 

The dissertation discusses feature extraction approaches employed for animal repertoire 

analysis and for individual animal identification.  It addresses the question of which 

among the features or combination of features are fit for the repertoire recognition task 

and which one is robust for an individual classification task. 

The study examines some feature extraction approaches such as the Greenwood 

function cepstral coefficients (GFCCs), pitch tracking, delta and acceleration 

computation, cepstral mean and cepstral variance normalization.   

Some validations through song-type recognition and individual identification of 

ortolan bunting show the features that combine GFCC, energy (E), delta (D), acceleration 

(A) and variance normalization (VN) are best for call-type recognition; and likewise, 

GFCC along with energy, delta and acceleration features give better discriminant power 

for individual bird recognition.  For beluga whale repertoire data, meanwhile, GFCC, 

delta and acceleration features lead to the best performance for repertoire clustering. 

 

2. An integrated framework for the unsupervised task of model-based clustering.  

This dissertation has presented an integrated framework for model-based clustering using 

the likelihood feature space.  It addresses the problem of clustering of animal 

vocalizations using HMMs.   
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The framework incorporates a cluster dissimilarity evaluation and deltaBIC 

computation to estimate the number of clusters in the data, and maximum variance 

initialization to initialize cluster models; and suggests dissimilarity index analysis as an 

unsupervised way of evaluating clustering results.  

 

3. An empirical study on acoustic assessment of the beluga whale population structure. 

This case study investigates the suitability and usefulness of the framework for marine 

mammal population structure assessment.  It explores the relationship between 

established beluga social groups as indicated by their vocalizations. 

The study addresses the GFCC feature analysis to extract feature vectors of 

beluga whale repertoires, dissimilarity analysis to estimate the number of different 

repertoires in the data set, HMM-based k-model clustering to group similar repertoires, 

and dissimilarity value computation to assess consistency of the clustering results.  

A comparative study of wild and captive beluga repertoires shows the reliability 

of the approach to assess the acoustic characteristics (similarity, dissimilarity) of the 

established social groups.  The results demonstrate the feasibility of the method to assess, 

to track and to monitor the beluga whale population for potential conservation use.  

 

4. An integrated framework for supervised classification and unsupervised clustering in 

population estimates. 

The dissertation has proposed an integrated framework that combines the advantages of 

supervised classification and unsupervised clustering approaches to estimate the number 
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of animals in a population.  The method is able to estimate animal abundance using three 

possible scenarios: 

(a).  Assuming availability of  training data from a specific species with call-type labels 

and speaker labels, the method estimates abundance utilizing supervised repertoire 

classification and individual recognition, unsupervised individual animal clustering, and 

mark-recapture computation (Scenario 1). 

(b). With availability of training data with only call-type labels (no individual identities), 

the proposed method is able to perform population estimation by implementing joint 

supervised repertoire classification and unsupervised individual clustering (Scenario 2). 

(c). With availability of a few call-type examples, but no full training set,  the method is 

able to perform population estimation using joint unsupervised repertoire clustering and 

individual animal clustering (Scenario 3). 

The experiments performed over the Norwegian ortolan bunting data set show the 

feasibility and effectiveness of the method in estimating ortolan bunting population.   

 

6.2. Future work 

There are several potential future directions for this work. 

1.  Generalize-able method: species assessment and population estimation. 

The dissertation suggests three possible scenarios to assess animal populations, whether 

for population structure assessment or for population abundance estimate. The framework 

is easily expandable and generalized to other species.  The modification and adjustment 

would be related to the features being used, the HMM parameters being employed, and 

some species-specific characteristics being examined.  Species-specific frequency 
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warping functions that characterize the frequency range of the species vocalizations can 

be incorporated into the GFCC features.   The window size and its step size can be 

adjusted to accommodate the rate of change of the species vocalizations.  The HMM and 

GMM mixtures might be adjusted to account for different degree of the vocalization 

complexity.  A language model, especially those species which use a syllabic structure, 

can be applied to model the grammar of the repertoire.  

For estimating abundance of animals comprised of different species, whenever 

species specific data sets are available, the study may be expanded to incorporate initial 

species separation and classification.  This starts with an initial species recognition task, 

followed by the method used in the Scenario 3 that utilizing joint repertoire and 

individual animal clustering.  

The HMM-based framework proposed in this dissertation would be a valuable 

survey tool to investigate and to improve current methods (Terry and McGregor, 2002; 

Holschuh, 2004; Hartwig, 2005) and even further to estimate their abundance. 

 

2. Call-independent HMM-based abundance estimate. 

The current approaches of the individual animal identification and clustering employed in 

this dissertation are based upon the similarity of the same call-type or repertoire.  The 

study splits the data set into data of the same calls and identifies the individuals based 

upon the data of those calls.  

This call-dependent technique is arguably difficult to implement under the 

following conditions (Fox, 2008): (a) individuals temporarily change their vocalizations 

due to social context, body condition, time of year, emotional state and temperature; (b) 
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individuals permanently change their calls and have new syllables or entirely new 

vocalizations because of the natural progression, (c) individual animals in a species have 

limited call sharing, (d) individuals have extensive repertoire variations.  

To carry out individual identification regardless of call-types or repertoires, future 

study sees the importance of addressing failure to identify such features so far, 

investigating features that are specific to the individual’s vocalization, stable in spite of 

the particular repertoire produced; constant over a long period, robust to noise and robust 

against the variation of voice quality and speaking manner.  

 

3. Combining acoustic-based and visual-based method of population assessment 

In most species studies there has been greater emphasis on visual methods to estimate 

density or abundance.  Few studies, however, have initialized an integration of visual and 

acoustic methods for population assessment which has the potential to greatly improve 

the abundance estimate.  The greatest benefit, therefore, might be obtained by using the 

best attributes of each method in an integrated survey. 

Acoustic methods can provide improvement by extending search range, by 

allowing survey at night, by detecting animals that are not visible, by estimating the 

fraction of animals missed by visual method (Clapham, 2002).  The purely acoustic 

estimation of the number of individuals in a large group with many overlapping 

vocalizations remains challenging.  For bird population, only active calling or singing 

birds (mostly males) can be detected.  Females and immature males may be missed 

because they vocalize less frequently. Visual methods, therefore, are still important.  
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