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Abstract 
Speaker identification and verification has received a great deal 
of attention from the speech community, and significant gains in 
robustness and accuracy have been obtained over the past decade 
[1], [2].  However, the features used for identification are still 
primarily representations of overall spectral characteristics, and 
thus the models are primarily phonetic in nature, differentiating 
speakers based on overall pronunciation patterns. This creates 
difficulties in terms of the amount of enrollment data and 
complexity of the models required to cover the phonetic space, 
especially in tasks such as cross-lingual verification where 
enrollment and testing data may not have similar phonetic 
coverage. This paper introduces the use of a new feature for 
speaker verification, residual phase cepstral coefficients (RPCC), 
to capture speaker characteristics from their vocal excitation 
patterns.  Results on a cross-lingual speaker verification task 
taken from the NIST 2004 SRE demonstrate that these RPCC 
features are significantly more accurate than traditional mel-
frequency cepstral coefficients (MFCC) when the amount of 
enrollment data available for training is limited.  Additionally, 
because of the significant differences in the nature of the features, 
combining MFCC and RPCC features shows an improvement in 
verification results over MFCCs alone. 
Index Terms: speaker verification, glottal source excitation, 
residual phase cepstrum, GMM, UBM. 

1. Introduction 
Speaker identification and verification is an important 
application which has received a great deal of attention from the 
speech community, and significant gains in robustness and 
accuracy have been obtained over the past decade [1], [2].  
However, the features for identification and verification, such as 
cepstral coefficients are still primarily representations of the 
overall spectral characteristics, and thus the models are primarily 
phonetic in nature, with systems differentiating speakers through 
characterization of pronunciation patterns. Little progress has 
been made toward identifying individually unique speech 
characteristics that are independent of phonetic content and 
language. This causes several significant limitations, including 
the need for models that represent a speaker’s entire phonetic 
space and enough enrollment data to cover this model space. 
Additionally, there are some types of identification applications 
where the phonetic characteristics of the enrollment data does 
not necessarily match that of the test data, such as cross-lingual 
verification. This is important in multilingual environments, 

where speakers may access the system in any one of multiple 
languages.   

This paper proposes the use of a new feature for speaker 
verification, residual phase cepstral coefficients (RPCC), which 
captures characteristics from speakers’ excitation rather than 
vocal tract characteristics and is more compact across a wide 
range of phonetic conditions. The goal of this alternative feature 
is to rapidly capture of the characteristic physiological features 
of a speaker, requiring less enrollment data and less complex 
models and enabling better performance in cross-lingual or 
phonetically misaligned enrollment/test conditions. 

Vocal tract related features such as mel-frequency cepstral 
coefficients (MFCCs) and linear predictive cepstral coefficients 
(LPCCs) have been the dominant features for speaker 
recognition for a long time. These features capture the 
characteristics of vocal tract and are thus very useful for speech 
recognition.  MFCCs can also give excellent performance for 
speaker recognition since MFCCs capture comprehensive 
information about speaker spectral characteristics and 
pronunciation patterns.  

However, MFCCs require sufficient phonetic coverage to 
train a phonetically dependent speaker model since MFCCs are 
primarily related to the phonetic content. For example, MFCCs 
have an excellent performance when sufficient training and test 
data is available. In contrast, state-of-the-art speaker recognition 
systems suffer performance degradation when only small 
amounts of data (less than 10 seconds) is available [3]. Kinnunen 
[4] shows that MFCCs are not effective for speaker recognition 
on the 10sec-10sec condition of the NIST 2006 SRE corpus. 
Speaker recognition systems using MFCC features also show an 
accuracy decrease when the speaker model is trained in one 
language but testing is performed in a different language [5][6].  
There is still a significant need for identification of unique 
speaker-specific features that are more independent of phonetic 
content and spoken language, and whose performance is less 
dependent on the amount of data.  

Potential speaker-specific feature candidates would be those 
based on vocal source or excitation information, which contains 
much of the unique physiological properties of a speaker’s 
speech production. These characteristics are unique to a given 
speaker’s speech production system. The vocal source can also 
represent the tension of the vocal fold, which is associated with 
the glottal pulse parameters, such as the rate of the glottal closing, 
and the degree of the glottal opening. Examples of such features 
might be derivatives of fundamental frequency characteristics 
like jitter, shimmer, and harmonic amplitudes [7]. Orthogonal 
linear prediction coefficients have also been proposed as features 
for speaker identification [8] because they are more constant 



across utterances and thus are more independent of the linguistic 
context and indicative of the speaker.  

Recently, it has been reported by K.S.R. Murty and B. 
Yegnayaranana [9] that LP residual phase extracted from vocal 
source also contains speaker-specific source information [10]. 
The changes in the phase around the glottal closure instants are 
different from one speaker to another. Their results demonstrate 
the complementary nature of the residual phase to the 
conventional system based on spectral features such as MFCCs. 
In [9], the entire residual phase of each frame (20ms) is directly 
applied for speaker recognition. This large feature dimension 
increases the complexity of the model and causes difficulty due 
to temporal variability.  

In the study presented here, we develop a new feature 
extraction method based on the residual phase by performing 
cepstral analysis of the residual phase signal to give a lower 
feature dimension and de-correlate the feature vector. This de-
correlation analysis allows the feature vectors to be modeled 
with the same Gaussian Mixture Model (GMM) approach 
typically used in speaker verification systems.  Because of the 
decoupling of these features from the phonetic variation of the 
vocal tract and articulators, the amount of enrollment data 
needed for training is reduced.  

This paper is organized as follows. Section 2 provides the 
details of the baseline system and the proposed feature extraction 
method. The baseline speaker verification system based on 
GMM-UBM-MAP is described in Section 3. Section 4 describes 
the experimental data, setup and results, and the final 
conclusions are given in Section 5.  

2. Feature extraction 
The LP residual signal of a speaker represents the impulse-like 
excitation which is related to the region around the glottal 
closure instant within each pitch period, corresponding to a high 
signal-to-noise ratio region. These regions are known to contain 
speaker-specific information [11].  Listening experiments have 
also shown that the residual carries significant speaker specific 
information, for it is known that residual provides valuable 
information that allows humans to distinguish between speakers 
[12]. Vocal tract excitation differs among speakers and stays 
stable within a given speaker. This leads to the possibility that 
features extracted from the residual signal may be useful in 
speaker recognition. Most features related to the residual are 
based on the magnitude spectrum of the LP residual signal, with 
the phase spectrum discarded. The large fluctuation of the 
residual causes difficulty deriving useful features from the LP 
residual. Gautherot reported that the magnitude spectrum of LP 
residual is flat, suggesting that the major information component 
is retained in the phase [12]. 

In this study, the proposed feature uses a Hilbert 
transformation to obtain the analytical signal of the LP residual 
[13], [14] and then extracts the spectrum shape of the residual 
phase by cepstral analysis. Compared to using the residual phase 
signal directly, this novel feature compactly captures 
perceptually meaningful source-like information from residual 
phase, and provides more speaker specific information about a 
speaker with a lower dimension.  

 

2.1. MFCC 
MFCCs are commonly used in most speech and speaker 
recognition systems. These approximate the perceptual model of 
the human auditory system by warping the linear frequency axis 
to match the Mel-scale cochlear frequency map. Although there 
are several possible methods for computation, here the filterbank 
approach is used, where the spectrum of each Hamming-
windowed signal is divided into Mel-spaced triangular frequency 
bins, then a Discrete Cosine Transform (DCT) is applied to 
calculate the desired number of ceptral coefficients.  

2.2. Residual phase cepstral coefficient (RPCC) 
The definition of residual phase is the cosine of the phase 
function of the analytic signal [9]. The analytic signal is derived 
from the LP residual of a speech signal. The calculation of LP 
residual is equal to the error between the actual value ( )s n and 
the predicted value ˆ( )s n , given by  
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where p is the order of prediction and ka are the linear prediction 
coefficients obtained from LPC analysis. Then, the phase of the 
analytic signal is calculated for the posterior feature extraction 
processing. 

The analytical signal of the LP residual ( )r n  is given by  
 ( ) ( ) ( )a hr n r n jr n= + ,    (2) 
where ( )hr n  is the Hilbert transform of ( )r n  and is given by 
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where ( )R ω is the discrete Fourier transform of r(n) and IDFT 
denotes the inverse discrete Fourier transform. 

The cosine of the phase information is calculated by the 
following equation:  
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Figure 1: Block diagram for the proposed RPCC implementation. 

In [9], the residual phase is directly implemented as a 
complementary feature to MFCC into their speaker recognition 
system. Instead, the method proposed here performs mel-spaced 
cepstral analysis on residual phase as shown in Figure 1. The 
magnitude spectrum of the residual phase is computed and 
warped to the Mel frequency scale followed by the usual log and 
DCT to obtain RPCC.  



3. Method 
State-of-the-art approaches for text-independent speaker 
verification are often based on Gaussian Mixture Model-
Universal Background Model (GMM-UBM) [15]. The UBM is a 
speaker-independent GMM trained with speech samples from a 
large set of speakers to represent general speech characteristics. 
The hypothesized speaker model is derived from the UBM using 
Maximum A Posteriori (MAP) adaptation with the 
corresponding speech samples from a particular enrolled speaker. 
The strategy of adapting the target speaker model is based on the 
similarity between the enrollment data of target speaker and 
UBM, adjusting the UBM to the speaker training data. During 
adaptation, the distributions of the UBM which are far from the 
feature of target speaker remain almost unchanged. The block 
diagram of a speaker verification system based on GMM-UBM 
is showed as Figure 2. 
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Figure 2: Speaker verification based on GMM-UBM 
modeling techniques. 

4. Experiments 
This section describes the experimental data, setup and results 
for implementing a baseline MFCC and the proposed RPCC 
speaker verification systems based on the UBM-GMM 
framework.  

4.1. Data 
For this particular cross-lingual speaker verification experiment, 
the bilingual speaker data is extracted from 2004 NIST SRE 
corpus. The NIST speaker corpus is a standard corpus to evaluate 
the performance of a speaker recognition system. Since 2004, a 
special effort has being made to recruit bilingual speakers who 
can speak Arabic, Mandarin, Russian or Spanish in addition to 
English. This corpus was originally collected to evaluate the 
effect of language, particularly differences between training and 
testing language, on speaker recognition systems. However, the 
main task of 2004 NIST SRE corpus involves speaker detection. 
The bilingual data of sixty-two bilingual speakers is extracted 
from this corpus to satisfy the data requirements of the bilingual 
speaker verification task. The information about the individual 
speakers’ languages is provided by NIST.   

4.2. Experimental setup 
In this experiment, the UBM is trained using data from all sixty-
two non-English speakers in the NIST corpus, representing 17 

Arabic speakers, 19 Mandarin speakers, 16 Russian speakers, 
and 10 Spanish speakers. The total number of samples for initial 
UBM training is 552, while there are an additional 564 samples 
from the target speakers used for verification purposes. The total 
duration of training and testing data sets is 147 minutes and 149 
minutes, respectively. There were an average of 9 speech 
samples per speaker, with an average length of about two 
minutes. Each target speaker’s model is adapted from the global 
UBM using the individual English language speech samples , 
and the verification is performed using their alternative language 
speech samples.  

For comparison, MFCCs are used as the baseline feature. 
The analysis window size is 12.5ms with a overlap of 6.25ms. 
Twenty two MFCCs are calculated and an LPC order of 22 is 
used to calculate the residual phase. The LPC residual is used to 
calculate RPCC features as described in the previous section, 
with a matching RPCC dimension of twenty-two.  

Three comparison experiments have been implemented. The 
first experiment focuses on evaluating the performance of the 
system as a function of the number of mixtures. The second 
investigates the impact of amount of enrollment data on system 
performance. Each individual speaker model is trained using an 
increasing amount of training data. The third investigates the 
degree of complementary information between RPCC and 
MFCC features by combining the two in a single system.  

4.3. EER with the increasing number of mixtures   

 
Figure 3: EER versus increasing number of mixtures. 

Figure 3 shows the EER as a function of increasing number of 
mixtures using all available training data.  This result supports 
the idea that RPCC features are more compact, needing a smaller 
number of model parameters to represent the information for 
each speaker. The RPCC features give lower error for all small 
model sizes up to 32 mixtures. Above that, the MFCC features 
give better performance, suggesting that once there is sufficient 
model complexity and training data the amount of total 
information in the MFCC features relevant to speaker 
identification is higher than that of RPCC.  
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4.4. EER with the increasing amount of training time 
Figure 4 shows the EER of both MFCC and RPCC features 
across an increasing amount of training time with 256 mixtures. 
Results also support the idea that RPCC features are more 
compact with less dependence on phonetic content, showing 
lower EER in the 1, 5, and 10 second conditions. MFCC features 
show better performance with larger amount of data, indicating 
that the additional spectral and phonetic information contained 
in the MFCC gives better overall discriminability once enough 
information is available to train the models. 

 
Figure 4: EER versus duration of enrollment data. 

4.5. DET curves 
 

 
Figure 5: DET curves comparing MFCC, RPCC and 

combined features. 

Figure 5 shows DET curves for MFCC features, RPCC features, 
and a combined feature set with 128 mixtures, using all available 
training data. The EER for MFCC reduced by the combined 
system illustrates that the information contained in these two 
feature sets is complementary, and that RPCC features can have 

benefit even with a more complex model and full length training 
data. The primary benefit, however, as illustrated in Figure 3 and 
Figure 4, is for circumstances where the amount of data and 
corresponding model complexity is low. 

5. Conclusions 
The experimental results confirm that the proposed feature 
provides information about speaker characteristics that is 
significantly different in nature from the phonetically-focused 
information present in traditional speaker identification features 
such as MFCCs. This new feature gives better results with 
smaller amounts of enrollment data and lower model 
complexities, and also provides complementary information that 
can improve overall system performance even for larger amounts 
of data. The fact that this new feature is less dependent on the 
phonetic content of the speaker makes it useful for low 
enrollment data tasks and also for tasks with language or other 
mismatch conditions between training and testing data, such as 
cross-lingual speaker identification or verification. 
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