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Abstract

In this paper, the authors propose the Beta-Order Minimum 
Mean-Square Error (MMSE) Spectral Amplitude estimator with 
Chi statistical models for the speech priors. The new estimator
incorporates both a shape parameter on the distribution and cost 
function parameter. The performance of the MMSE Beta-Order 
Spectral Amplitude estimator with Chi speech prior is evaluated 
using the Segmental Signal-to-Noise Ratio (SSNR) and 
Perceptual Evaluation of Speech Quality (PESQ) objective 
quality measures. From the experimental results, the new 
estimator provides gains of 0-3 dB and 0-0.3 in SSNR and PESQ 
improvements over the corresponding MMSE Beta-Order 
MMSE Spectral Amplitude estimator with the standard Rayleigh 
statistical models for the speech prior.
Index Terms: speech enhancement, amplitude estimation, phase 
estimation, parameter estimation

1. Introduction

Based on the performance of the Minimum Mean-Square Short-
Time (MMSE) Spectral Amplitude (STSA) estimator [1], 
researchers began to modify the squared-error of the spectral 
amplitude cost function to utilize more subjectively meaningful 
cost functions. Ephraim and Malah also developed and 
implemented the MMSE Log-Spectral Amplitude (LSA) [2]
estimator that minimizes the squared-error of the log-spectral 
amplitude, which is a more subjectively meaningful cost function 
that correlates well with human perception. You, Koh, and 
Rahardja [3, 4] and then Plourde and Champagne [5]
investigated the beta-order cost function, which minimizes the 
Mean-Square Error (MSE) between the MMSE Beta-Order 
Spectral Amplitude and estimated MMSE Beta-Order Spectral 
Amplitude by incorporating a power law parameter on the 
spectral amplitude cost function. The beta-order cost function 
yielded a good trade-off between speech distortion and residual 
noise reduction, particularly for weak spectral components. In 
each of those corresponding spectral amplitude and log-spectral 
amplitude estimators, the cost functions employed Rayleigh 
distributions for the statistical models of the speech priors.

In order to improve performance of the spectral amplitude 
estimators using objective measures such as Segmental Signal-
to-Noise Ratio (SSNR) and Perceptual Evaluation of Speech 
Quality (PESQ) for generating gains in noise reduction and 
overall speech quality, researchers began to exploit alternative 
and more accurate statistical modeling assumptions to the 
Rayleigh distribution for both the speech prior using the spectral 
amplitude cost function. Andrianakis and White [6, 7] continued 
with the MMSE and Maximum A Posteriori (MAP) spectral 
amplitude estimators with Gamma distribution but introduced 
Chi distribution for modeling the speech priors. The Chi speech 

prior contains a shaping parameter that was varied to determine 
its effect on the quality of enhanced speech. From the results, the 
performance of the estimators was dependent on the shaping 
parameter, which controlled the trade-off between the level of 
residual noise and musical tones. As a generalization to the 
MMSE STSA, LSA, and Beta-Order Spectral Amplitude 
estimators, Breithaupt, Krawczyk, and Martin [8] developed a 
MMSE STSA estimator that uses both a variable compression 
function in the error criterion and the Chi distribution as a prior 
model. The resulting two parameters provide for the reduction of 
musical noise, speech distortion, and noise distortion. Through 
the incorporation of Chi distribution statistical models for the 
speech prior, the squared-error cost functions demonstrated 
distinct improvement over the Rayleigh statistical models.

Despite the success of the MMSE beta-order cost function 
with Rayleigh speech prior and MMSE spectral amplitude cost 
functions with the Rayleigh and Chi speech prior, there has not 
been any work to merge their positive impacts together into a 
single estimator. Specifically, the improved statistical models for 
the speech prior have only been incorporated with the original 
MMSE STSA estimator, not with the MMSE Beta-Order 
Spectral Amplitude estimator. Instead of utilizing the Rayleigh 
distribution for the speech prior, the Chi distribution is employed 
in this work since it leads to more general, less complicated, and 
more closed-form estimator solutions. Thus, the focus of this 
work is to use the MMSE Beta-Order Spectral Amplitude 
estimator with the Chi spectral speech prior distribution [9] for 
reducing the background noise and improving overall speech 
quality.

The remainder of this paper is organized into the following 
sections: system and statistical models (Section 2), beta-order 
spectral amplitude estimation (Section 3), experiments and 
results (Section 4), and conclusion (Section 5).

2. System and statistical models

In the time domain, the single channel additive noise model is 
given as

     y t s t d t  , (1)

where  s t ,  d t , and  y t represent the clean, noise, and 
noisy signals. By taking the short-time Fourier Transform, (1)
can be written in the frequency domain as
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where  and k are the particular frame and frequency bin 
index.

As opposed to using the traditional Rayleigh statistical 
models for the speech prior and noise likelihood, the speech prior 



is modified through the use of Chi speech priors [9]. 
Specifically, the Chi speech prior is given as
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where 2
X a  with shape parameter a . With 0.5a  and 

1a  , (3) is equivalent to the Half-Rayleigh and Rayleigh 
distributions. The noise likelihood is still modeled as a Rayleigh 
distribution given as
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3. Beta-order spectral amplitude estimation

From [3], the beta-order cost function is given as

   2ˆ ˆ,d X X X X 
   , (5)

where  is the beta-order parameter value with estimator 
equation
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for 0  . With substitution of the statistical models in (3) and 
(4) and using 8.431.5 and 8.406.1 in [10], the spectral phase is 
integrated from the numerator integral in (6) as
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and
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where  is defined in [1] as
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 0J � is the 0th-order Bessel function of the first-kind, and
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which is equivalent to 1  for 1a  . By utilizing 6.631.1 and 

9.212.1 in [10], (7) and (8) are given as
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and
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where    and  1 1 ; ;F    are the gamma and confluent 

hypergeometric functions. With the combination and 
simplification of the integrals in (11) and (12), the final form of 
the new MMSE Beta-Order Spectral Amplitude estimator with 
Chi speech prior in (3) is given as
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where v is defined in [1] as
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with 1 0a  , 0a  , and 2 0a   . For 1a  , (13) is exactly 

equivalent to the MMSE Beta-Order Spectral Amplitude
estimator with Rayleigh speech prior [3].

4. Experiments and results

The proposed optimal MMSE Beta-Order Spectral Amplitude 
estimator with Chi speech prior given in (13) was evaluated 
using the objective measure of SSNR and PESQ. Clean and 
noisy speech were taken from the noisy speech corpus 
(NOIZEUS) [11], which contains 30 IEEE sentences [12]
(produced by three male and three female speakers) corrupted by 
eight different real-world noises at different SNRs ranging from 
0 dB to 15 dB at increments of 5 dB, where the noises were 
taken from the AURORA database [13], which includes train, 
babble, car, exhibition hall, restaurant, street, airport, and station 
noises.  The analysis conditions consisted of frames of 256 
samples (25.6 ms) with 50% overlap using Hanning windows. 



Noise estimation was performed on an initial silence of 5 frames. 
The decision-directed (DD) [1] smoothing approach was utilized 
to estimate  with 0.98SNR  using thresholds of 

25 10
min 10  and min 40  . The enhanced signals were 

reconstructed using the overlap-add technique.
The shape parameter a in the Chi speech prior was varied 

for a specific  parameter value to determine its impact on 
noise reduction and speech quality with results averaged over 30 
utterances using babble, car, and train noises. As advised by 
Plourde and Champagn [5], 1   was utilized as the 
parameter value to balance the gains in noise reduction and 
speech quality. Figure 1 and Figure 2 demonstrate the SSNR and 
PESQ improvements using the baseline MMSE Beta-Order 
Spectral Amplitude estimator with Rayleigh speech prior [3-5], 
where SSNR/PESQ improvement was computed as SSNR/PESQ 
output (enhanced signal) minus SSNR/PESQ input (noisy 
signal). For the SSNR improvements, the MMSE Beta-Order 
Spectral Amplitude estimator with Chi speech prior delivered 
gains over the baseline MMSE Beta-Order Spectral Amplitude
estimator with Rayleigh speech prior of approximately 0-3 dB 
across the different noises with the best results at the lower 
SNRs (i.e., 0 dB and 5 dB) for the car noise following by the 
train and babble noises. By proceeding to decrease the 
parameter value, which would result in the increase of the a
shape parameter value through the relationship 2 0a   from 
(13), the SSNR improvements would continue to increase for all 

the input SNRs, especially at 5 dB and 10 dB. In regards to the 
PESQ improvements, the MMSE Beta-Order Spectral Amplitude 
estimator with Chi speech prior generated returns of 0-0.3 over 
the baseline MMSE Beta-Order Spectral Amplitude estimator 
with Rayleigh speech prior. At input SNRs of 0 dB and 5 dB, the 
PESQ improvement reached around 0.55 and 0.50 (car noise), 
0.48 and 0.44 (train noise), and 0.29 and 0.29 (babble noise), 
which did not decrease below the baseline MMSE Beta-Order 
Spectral Amplitude estimator with Rayleigh speech prior until 
the a shape parameter extended to 0.7 0.8a   . In the end, the 
best performance occurred for the car noise at input SNR of 5-10 
dB using the SSNR and PESQ objective metrics.

5. Conclusion

In this paper, the authors derived MMSE Beta-Order Spectral 
Amplitude estimator using Chi speech priors. By comparison to 
the baseline MMSE Beta-Order Spectral Amplitude estimators 
using the Rayleigh speech prior, the Chi speech prior produced 
gains of 0-3 dB and 0-0.3 in SSNR and PESQ improvements. As 
measured by SSNR and PESQ metrics, the estimators showed 
solid performance for noise reduction and overall quality with 
the Chi speech priors in babble, train, and car noises. For future 
work, the authors propose developing and implementing an 
optimal combination of the shape parameter a and  parameter 
for the Chi distribution and beta-order cost function to provide 
further improvements in noise reduction and overall speech 
quality.

Figure 1: SSNR Improvement for MMSE Beta-Order Spectral Amplitude Estimator with Chi Prior
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Figure 2: PESQ Output for MMSE Beta-Order Spectral Amplitude Estimator with Chi Prior
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