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Abstract 
 

Multichannel fusion strategies are presented for the 
distributed microphone recognition environment, for 
the task of song-type recognition in a multichannel 
songbird dataset. The signals are first fused together 
based on various heuristics, including their 
amplitudes, variances, physical distance, or squared 
distance, before passing the enhanced single-channel 
signal into the speech recognition system. The 
intensity-weighted fusion strategy achieved the highest 
overall recognition accuracy of 94.4%. By combining 
the noisy distributed microphone signals in an 
intelligent way that is proportional to the information 
contained in the signals, speech recognition systems 
can achieve higher recognition accuracies.  
 
1. Introduction 
 

Over the past several decades, there has been 
extensive research in the speech and signal processing 
community on development of signal enhancement and 
robust recognition algorithms using both single-
channel microphones and microphone arrays. While 
the current state-of-the-art single-channel methods for 
speech enhancement [1] and speech recognition [2] 
work reasonably well for many applications such as 
hands-free and mobile communication, the 
performance of the algorithms still deteriorates under 
highly noisy conditions. On the other hand, the current 
state-of-the-art microphone array methods for speech 
enhancement [3] and recognition [4] have shown 

improvements over single-channel microphones for 
many applications such as hearing aids since the 
additional microphones allow the array to better 
suppress noise from different directions and only focus 
on the signal of interest. In both single-channel 
microphones and microphone arrays, the microphones 
are arranged in a structured microphone environment. 
Whereas single-channel microphones require the 
subjects to be situated relatively close to the 
microphone, microphone arrays [5] need close-spacing 
of the microphones to satisfy the spatial aliasing 
criterion and a priori knowledge of the array geometry. 
Clearly, single-channel microphones and microphone 
arrays are a restricted domain of possible microphone 
configurations. Speech enhancement and recognition 
systems that employ single-channel microphones or 
microphones arrays are unable to fully exploit all the 
available acoustic and spatial information from the 
environment. 

Recently, research in signal enhancement and 
speech recognition has begun to focus more on the 
larger domain of distributed microphones [5].  Figure 
1 illustrates an example of a typical distributed 
microphone scenario for the general case of 
omnidirectional sources in a diffuse noise field. 
Although there is not nearly as much research in this 
area, distributed microphones are becoming more 
common in practice for applications such as speaker 
spotting and tracking systems and generalize both the 
structured microphone environments of single-channel 
microphones and microphone arrays to an unstructured 
microphone environment. Specifically, distributed 



microphones involve an arbitrary placement of the 
microphones at potentially far distances from each 
other and the source with longer, unknown time-delays 
and larger, unknown signal attenuation. Researchers 
have found that microphones distributed over a wide 
area of interest have the potential to better reduce noise 
in both acoustic signals and feature vectors by 
exploiting significant acoustic and spatial information 
of the speech and noise sources [6]. Through the 
utilization of distributed microphones, speech 
enhancement and recognition systems can improve 
over simply selecting the closest microphone in the 
presence of background noise.  

Despite the recent interest in distributed 
microphone environments, there are currently not any 
standard state-of-the-art methods for distributed speech 
enhancement or speech recognition. McCowan and 
Sridharan [7] performed sub-band processing of 
microphone array signals for speech recognition by 
integrating dynamically-weighted models trained on 
each sub-array frequency bands based on sub-band 
speech energy. By also using microphone arrays, 
Seltzer, Raj, and Stern formulated full-band [4] and 
sub-band [8] beamforming methods for optimally 
combining microphone array signals to generate the 
sequence of features that maximize the likelihood of 
producing the correct hypothesis. In contrast, Shimizu, 
Kajita, Takeda, and Itakura [9] developed methods 
using a fixed sound source that perform speech 
recognition for each microphone and selects the 
highest likelihood or equally weights and combines the 
feature vectors from the microphones. The approaches 
would not work for the generalized case of distributed 
microphones because of the large spacing between the 
microphones and varying location of the sound source. 
As an alternative method, it would be better to 
combine the distributed microphone signals in an 
intelligent way that was proportional to the information 
they contained to achieve higher recognition 
accuracies.  

In this paper, the purpose is to perform speech 
recognition on vocalizations collected in a distributed 
microphone environment using a variety of heuristic 
fusion strategies for channel weighting, including 
signal amplitude, signal variance, source distance, and 
distance squared strategies. 
 
2. Distributed microphone corpus 
 

The 8-channel distributed microphone Ortolan 
Bunting (Emberiza Hortulana) unidirectional 
vocalization corpus was collected from the 
Passeriformes (song birds) in their natural habitat. The  
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Figure 1. Distributed Microphone Environment 
 
44.1 kHz, 16-bit wave data files were captured using 6 
 different microphone systems that each contained 8 
channels from the last two breeding seasons through 
multiple sites at Glesmyra Peatbog in Hedmark 
County, Norway. For each of the microphone systems, 
the individual microphones were not distributed in a 
regular pattern but instead were designed to fit the 
natural territorial boundaries of the birds. Overall, the 
distances between the focal bird and distributed 
microphones varied between 5–50 m with an average 
distance of 30 m. A reduced repertoire consisting of 
four different songtypes, ab, cd, eb, and jufb, was used 
for this experiment. 

 
3. Fusion strategies 
 

The general distributed microphone scenario of 
omni-directional sources is similar to traditional 
antenna theory [10]. The clean signal ( )s t captured at 
each particular microphone i is correlated across all 
microphones M , time-delayed by iτ , and corrupted by 
additive and uncorrelated noises ( )in t based on the 
model 

( ) ( ) ( )i i i iy t a s t n tτ= − + , (1)

where 0 t T≤ ≤ and 0 i M≤ ≤ denote the time and 
microphone channels, ( )iy t describes the individual 
noisy observation signals, and ia corresponds to the 
attenuation factors from the source ( )s t  to the 
individual microphone signals i . In (1), the attenuation 
factors ia measure the decrease in energy of the clean 
signal ( )s t as it propagates through the noisy air 
medium towards each microphone i . This decrease in 
energy is proportional to increasing distance from the 



source because of absorption, scattering, and reflection 
effects in three dimensions [11]. By assuming a priori 
knowledge of the microphone and source locations, the 
signals can be time aligned and (1) can be expressed as 

( ) ( ) ( )i i iy t a s t n t= + , (2)

where the delay iτ has been removed, which is 
necessary for fusing the distributed microphone 
signals. 

Based on the assumption that the clean 
signal ( )ŝ t can be estimated as a linear combination of 

the individual observation signals ( )iy t , we can write 
the estimation formula 

( ) ( )ˆ i i
i

s t w y t= ∑ , (3)

where ( )iw t is a microphone-dependent weighting 
factors. There are several possible heuristic approaches 
for the weighting factors iw in the distributed 
microphone fusion model [12]. As a simple fusion 
strategy, the individual noisy observation 
signals ( )iy t can be assigned unity weighting factors 

1iw = , (4)

which assumes that each of the noisy observation 
signals ( )iy t have equal importance for producing the 

estimate of the clean signal ( )s t . The unity weighting 
factors in (4) treat the cleaner and noisier signals 
equally, whereas combining the noisy observation 
signals ( )iy t with unequal weights, where the cleaner 
signals would have more weight and the noisier signals 
would have less weight, would be expected to 
ultimately produce an enhanced clean signal ( )ŝ t that 

best reduces the effects of the noises ( )in t at each of 
the microphones. 

It should be noted that the enhanced clean 
signal ( )ŝ t from the microphone fusion model in (3) 
has the same form as a beamformed output source 
signal [5]. While the spatial aliasing criterion is not 
satisfied for multichannel observation 
signals ( )iy t collected by distributed microphones, the 
aperiodic and random placement of the microphones 
eliminates the grating lobes in the radiation pattern and 
produces a distinct main lobe for the clean 
signal ( )s t of interest analogous to microphone arrays 
[13]. Since beamforming with microphone arrays 
provides a platform for the extension to distributed 

microphones, the weights of the delay-and-sum 
beamformer serve a comparable role as the weighting 
factors iw of the distributed microphones given as 

1iw M= , (5)

where M is the total number of microphones in the 
distributed microphone environment. Since scaling has 
no impact on recognition results, the weighting factors 
in (5) are equivalent to the unity weighting factors 
from (4) [5].  

Possibilities for weighting schemes could involve 
many different factors, including distance from the 
subject to the microphone i , the number of 
microphones M , and estimated amplitudes and 
estimated variances of the clean signal ( )s t  and noisy 

observation signals ( )iy t  [12]. Based on the 

propagation of the clean signal ( )s t to the individual 

microphones i , the weighting factors ( )iw t can be 
estimated based on sound pressure (pressure deviation 
from ambient pressure caused by sound waves), which 
for omnidirectional sound sources is inversely 
proportional to physical distance 

1i iw d=  (6)

or through sound intensity (sound power per unit area), 
which for omnidirectional sound sources is inversely 
proportional to the square of the distance [11] 

21i iw d= . (7)

As a final set of fusion strategies, the weighting 
factors iw for the distributed microphones can be 
computed through amplitudes and variances of the 
noisy observation signals ( )iy t . For non-
omnidirectional sound sources, the measurements of 
actual sound amplitude and power may be more 
indicative of sound pressure and sound intensity than 
physical distances. The approach can be utilized to 
combine the noisy observation signals ( )iy t  through 
noisy amplitudes 

2
ii yw σ=  (8)

or noisy variances 
2

ii yw σ= , (9)

which can be estimated directly from the individual 
channel signals.  
 



4. Experimental results 
 

The weighting factors represented by equations (5), 
(6), (7), (8), and (9) were independently implemented. 
These are denoted “equal weighting,” “inverse 
distance weighting,” “inverse distance squared 
weighting,” “signal amplitude weighting,” and “signal 
power weighting.”  

The 8-channel distributed microphone noisy 
observation signals were combined together as 
described above as a front-end to the speech 
recognizer for performing song-type classification. 
Based on results of previous work with song-type 
classification on single-channel Ortolan Bunting 
vocalizations [14], the analysis conditions for the 
distributed microphone corpus were frames of 5 ms 
with 50% overlap with 12 Generalized Cepstral 
Coefficient (GFCC) [15] features computed from the 
26-channel filterbanks [16] and appended with the 
delta and delta-delta coefficients. The left-to-right 
song-type Hidden Markov Models (HMMs) [17] 
consisted of 18-states with a single diagonal-
covariance Gaussian Mixture Model (GMM) 
underlying each state with approximately an equal split 
of the four song-types across each of the 8-channel 
microphones under matched training and testing 
conditions. HMM implementation was done using the 
Hidden Markov Model Toolkit (HTK) software toolkit 
[18]. 

Recognition accuracy results are shown in Table 1 
and Table 2. Accuracies are shown for each syllable 
(C = Correct and T = Total) and overall. All methods 
outperform the baseline. The inverse distance squared 
strategy achieved the highest overall song-type 
recognition accuracy at 94.4% over simply utilizing 
the baseline closest channel at 90.7%.. Conversely, the 
signal power weighting and signal power weighting 
from (9) and (8) had recognition accuracies of 91.2% 
and 92.0%, which were the lowest of the fusion 
strategies.  The equal weighting of the noisy 
observation signals provided surprisingly good 
recognition results at 93.3%, which was only 1.1% 
lower than the best results with the inverse distance 
weighting fusion strategy. Ultimately, the inverse 
distance squared fusion strategy using the acoustic 
signals over combining the extracted speech feature 
vectors obtained the best enhancement and recognition 
results for the distributed microphone corpus.  

 
5. Conclusion 
 

Distributed microphones generalize single-channel 
microphones and microphone arrays to unstructured 

microphone environments and potentially better reduce 
background noise for speech recognition systems. By 
comparing various fusion strategies for the distributed 
microphone experiments, the best way to combine the 
multichannel signals is through an inverse distance 
squared strategy with an accuracy of 94.4% for song-
type classification. In contrast, the baseline closest 
single-channel produced an accuracy of 90.7%. 
Overall, the intelligent combination of distributed 
microphone signals through heuristic approaches 
produced higher recognition accuracies than simply 
selecting the closest channel.  
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