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Optimal Calibration of PET Crystal Position Maps
Using Gaussian Mixture Models

Kelly A. Stonger and Michael T. Johnson, Senior Member, IEEE

Abstract—A method is developed for estimating optimal
PET gamma-ray detector crystal position maps, for arbitrary
crystal configurations, based on a binomial distribution model for
scintillation photon arrival. The approach is based on maximum
likelihood estimation of Gaussian mixture model parameters
using crystal position histogram data, with determination of the
position map taken from the posterior probability boundaries
between mixtures. This leads to minimum probability of error
crystal identification under the assumed model.

Index Terms—Crystal position map, Gaussian mixture model,
maximum liklihood estimation, positron emission tomography
(PET).

I. INTRODUCTION

A common detector configuration for a positron emission
tomography (PET) scanner consists of a 2-D array of

scintillation crystals coupled to four photomultipliers (PMTs)
[1]–[4], as shown in Fig. 1. When a scintillation crystal under-
goes gamma interaction, a scintillation photon is generated that
is detected by all four PMTs. Each PMT produces a voltage
that is used by the detector interface hardware to produce
an and position, which represents the position of the
gamma interaction on the detector crystal face. The hardware
then maps the coordinate to a specific detector crystal,
typically using a lookup table [3], [5]. The position thresholds
implemented in this table are typically referred to as a crystal
position map (CPM). The goal in determining the CPM is to
minimize the probability of error in crystal identification. We
undertake to achieve this goal directly using statistical pattern
recognition tools for unsupervised clustering to model the
underlying distribution of scintillation photon collection in the
PMTs.

Under the simple assumption that the probability of scintil-
lation photons reaching a PMT from a particular crystal is con-
stant, the number of photons received can be described by the
binomial distribution [2], which approaches a normal distribu-
tion as the number of photons becomes large [3]. The number
of photons collected by the PMTs along a particular dimension
is then given by

(1)
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where

Based on this, a maximum likelihood estimate of the position
coordinate can be calculated using the sample mean of the PMT
voltages. With a typical PMT arrangement, this leads directly to
the simple coordinate equations [5]

(2)

where , , , and represent the signals from the four indi-
vidual PMTs.

Since the differential between two parallel axes is also
Gaussian, an alternative coordinate expression [3] is

(3)

The difference between (2) and (3) is one of dynamic range—in
the former case and are values between 0 and 1, while in
the latter the values are between 1 and 1. Bayesian methods
of estimating the position coordinates [6]–[8] may also be used,
such as via calibrated lookup tables [6] requiring mapping each

position to corresponding measured PMT voltage levels.
With ideal hardware, the crystal position map would simply

divide the dynamic range of the locations into equal
areas, one for each crystal in the detector. In reality, scintil-
lation photon scattering effects, manufacturing differences
in detectors, and nonlinearities in the system require that the
region for each crystal must be uniquely discovered for each
detector block.

Typically, a PET system can enter a calibration mode, where
a flood phantom or source pin is used to illuminate the detectors
while the hardware accumulates counts of gamma-ray events for
all coordinate pairs on a detector. This data set, as shown
in Fig. 2, is called a position histogram, and can be thought of
as an image of gamma-ray counts on the detector crystal face.

Several algorithms exist that utilize a position histogram to
produce a CPM [3], [9]. Most make only limited use of the sta-
tistics provided by the position histogram data. There has also
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Fig. 1. PET scanner diagram.

Fig. 2. An example position histogram with a resolution of 128 � 128.

been work in designing photodiode implementations to improve
crystal identification [7]. As mentioned previously, much of the
existing work in this area [1], [2], [6]–[8] has centered on the
detector itself and on calibrating the outputs of the four PMTs
to produce good spatial resolution and location estimates, rather
than focusing on the crystal identification task directly.

The approach introduced here uses a statistical representation
to determine the optimal CPM with respect the Gaussian po-
sition model outlined above. The method, based on likelihood
boundaries of Gaussian mixture models (GMMs), is robust in

that it is simple to implement and can be easily adapted for ar-
bitrary crystal configurations. The resulting CPM has the min-
imum probability of error possible, given the Gaussian photon
distribution model.

The basic GMM will be introduced in Section II, including
parameter estimation formulas and maximum a posteriori map
identification. Section III will illustrate the method on data from
an example 6 6 crystal configuration, and quantify the differ-
ence between the new method and other algorithms. Conclu-
sions and possibilities for future work are given in Section IV.
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II. GAUSSIAN MIXTURE MODELS

The binomial distribution of photon collection discussed in
Section I leads directly to a two-dimensional Gaussian model
for the position associated with a particular crystal. For
a block of crystals, the overall distribution of position is
then given by a GMM [10], [11]

(4)

where

(5)

The GMM is simply a weighted sum of Gaussian distribu-
tions. For the crystal mapping problem, the prior likelihoods
would be uniform and the two dimensions and would be in-
dependent, so that the covariance matrix would be diagonal.
However, in reality there are some interactions between the di-
mensions, particularly near the corners of the map, so that a full
covariance matrix is still preferable for this problem.

Parameter estimation for a GMM is commonly done using the
expectation maximization algorithm [12], an iterative algorithm
leading to locally maximum likelihood estimates

(6)

where is the data point and is the mixture occu-
pancy likelihood

(7)

Sums on the right-hand side of the re-estimation formulas are
computed using the current estimates of the parameters.

Given a set of histogram data, the above formulas can be
easily implemented to estimate the means, variances, and

weights of the crystal distributions, given initial estimates for
these parameters. For the crystal map task, the estimation algo-
rithm above is fairly robust with respect to initialization, since
the number of mixtures is known a priori and the mixture dis-
tributions are relatively well-separated. However, initialization
too far from the histogram peak values can occasionally cause
errant results, as discussed further in Section III. Initialization
methods range from the simplicity of a uniform grid to peak
selection algorithms or clustering algorithms like K-means
[13]. For these experiments we use a simple low-pass filter
of the histograms and windowed peak selection, described in
detail in Section III. The covariance matrices can be initialized
fairly arbitrarily; the method used here is to set the initial
covariances at about half the distance between crystal centers.

After initialization and estimation using the histogram data
as outlined above, the CPM is determined using the equi-likeli-
hood boundaries between the classes. From a statistical pattern
recognition perspective, this is equivalent to associating each lo-
cation in the CPM with the most likely crystal according to the
maximum a posteriori (MAP) decision rule [13]

(8)

This rule leads to the minimum probability of error deci-
sion by identifying the crystal most likely to have generated
voltages corresponding to each particular position. If the crys-
tals can be expected to be equally likely, the prior likelihood
terms can be dropped from this expression, giving the max-
imum likelihood (ML) decision rule. The scalar valued func-
tions used for classification in (8) are called the
discriminant functions for each class, and the equi-value bound-
aries between the discriminant functions give the classification
decision boundaries. For Gaussian distributions, the decision
boundaries are quadratic functions of the means and covariance
matrices of the crystals.

The algorithm for setting the CPM is summarized as follows:

1) initialize the GMM parameters;
2) run the EM re-estimation procedure given in (6) until pa-

rameters converge (typically only a few iterations);
3) identify each point in the CPM with the associated MAP

crystal according to (8).

III. EXPERIMENTAL EXAMPLE

A. Description of Detector System

The system used in this study was a GE Discovery ST PET
system. The detectors consist of a 6 6 array of bismuth ger-
manate (BGO) crystals coupled to four PMTs. The position his-
tograms of 280 detector blocks were used as training data for
the algorithm.

B. Algorithm Preprocessing and GMM Initialization

The dynamic range of the (X,Y) coordinates of the position
histogram produced by the hardware is 256 256. This data set
was reduced to 128 128 by summing four adjacent pixels to
produce one pixel in the 128 128 position histogram. This re-
duction has a low pass filtering effect and decreases processing
time. Additional smoothing of the histogram, as illustrated in
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Fig. 3. Smoothed crystal position histogram.

Fig. 3, is accomplished by a convolution with a simple low-pass
filter with kernel:

The initialization procedure used to set the initial GMM
means was adopted from part of the current CPM calibration
procedure, and is given as follows.

1) For each coordinate in the filtered position histogram with
more than a threshold (100) number of counts, determine
if it is a local maximum. If it has more counts than any of
its 8 immediate neighbors, then save it in a peak candidate
array.

2) Find the average counts of the peak candidates and re-
move any that are less than 25% of the mean, until no
longer possible or there are 36 peaks remaining.

3) Remove any peaks that are close (less than 20 pixels) by
Euclidean distance, until no longer possible or there are
36 peaks remaining.

4) Remove any peaks that are less than 30% of the mean,
until no longer possible or there are 36 peaks remaining.

5) Repeat step 4, incrementing the mean threshold by 5%
each time, until there are 36 peaks remaining.

The final 36 coordinate pairs are used as the initial mean
values in the GMM. The priors of each mixture are ini-
tialized to 1/36, and the covariance matrices are initialized as
diagonal with .

To investigate robustness of the algorithm with respect to pa-
rameter initialization, the initial mean values were modified by
adding white noise over a range of variances.

C. Position Histogram Sampling

Processing time for the algorithm can be substantially re-
duced by down-sampling the data, since the number of counts

in a typical position histogram is much larger than needed for
accurate boundary identification. This process can also include
an optional noise floor on the histogram.

Both full and down-sampled histograms, with and without
noise floor constraints, were investigated, with the resulting
maps changing only minimally.

D. Results

This algorithm was implemented in Matlab and trained on
the crystal position histograms of 280 detector blocks. A typ-
ical GMM crystal map can be seen in Fig. 4, where the lines in
the image represent the decision boundaries between the crys-
tals and the GMM mean value locations are shown as points
inside the regions. Fig. 5 is a crystal map produced using the
current method used by GE for this crystal configuration, with
histogram peaks shown as points. Fig. 6 is the pixel by pixel dif-
ference between this method and the GMM method. The total
pixel difference is 5.3%, which was a typical result of the 280
detectors sampled. Fig. 7 is a crystal map produced by following
the valleys between the crystal peaks [3], which are again shown
as points. Fig. 8 is the pixel by pixel difference between this
valley-tracking method and the GMM method. The total pixel
difference in this case is 9.4%.

The pixel differences given above represent an artificially
high measure of error, since the boundaries are located where
the relative probability is fairly low. An alternative way of esti-
mating the relative error, both within the GMM method and dif-
ferentially compared to the other methods, is to use the integral
of each crystal’s GMM mixture distribution outside of its deci-
sion region as an estimate of the probability of error. Using this
metric, the probability of error for the GMM method is 0.7%.
For the method in Fig. 5, the estimated error is 2.8%, and for
the method in Fig. 7 the estimated error is 3.6%. Note that the
two comparative error estimates are biased in favor of the GMM
approach since the metric assumes that the Gaussian location
distribution of the GMM is the ideal decision boundary. One
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Fig. 4. GMM CPM method.

Fig. 5. Current GE CPM method.

substantial benefit of this error assessment method is that it can
estimate and track the expected error of the crystal mappings as
it changes over time due to physical system deterioration and
drift.

By examining the error of the maps as a function of noise
added to the initial mean estimates, it was found that the final
mixture locations was relatively unaffected by mean initializa-
tions within about 10% of the true histogram peaks, relative to
distance between crystal centers. Outside this range, the algo-
rithm demonstrates an increasing likelihood of final map error
as a function of the error in the initial values.

IV. CONCLUSION

An ML method based on GMMs has been presented for con-
structing crystal position maps of PET gamma-ray detectors.
Under the assumption that the underlying crystal probability
distribution is Gaussian, this method will produce the minimum
probability of error crystal position map.

Fig. 6. Subtraction of GMM and GE methods (5.3% difference).

Fig. 7. Histogram tracking CPM method.

Fig. 8. Subtraction of GMM and histogram tracking methods (9.4%
difference).



90 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 1, FEBRUARY 2004

In addition to the optimality of the resulting map with re-
spect to crystal identification, benefits of this approach include
adaptability and ease of implementation for any possible crystal
configuration, robustness with respect to crystal alignment and
noise, and the ability to assess expected error of the crystal maps
over time.

Future work in this area includes the possibility of improving
the underlying model of position distribution by incorporating
effects of nonlinear effects such as scattering. Such effects may
cause the true distribution to deviate from Gaussian, which
could be captured by using mixtures of other elliptically sym-
metric distributions, for example by using multiple Gaussian
mixtures for each crystal, with tied means.
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