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ABSTRACT 

 
A novel method for speech recognition is presented, utilizing 
nonlinear/chaotic signal processing techniques to extract time-
domain based, reconstructed phase space derived features. By 
exploiting the theoretical results derived in nonlinear dynamics, 
a distinct signal processing space called a reconstructed phase 
space can be generated where salient features (the natural distri-
bution and trajectory of the attractor) can be extracted for speech 
recognition. To discover the discriminatory strength of these 
reconstructed phase space derived features, isolated phoneme 
classification experiments are executed using the TIMIT corpus 
and are compared to a baseline classifier that uses Mel frequency 
cepstral coefficient features (MFCCs). The results demonstrate 
that reconstructed phase space derived features contain substan-
tial discriminatory power, and when the two feature sets are 
combined, improvement is made over the baseline. This result 
suggests that the features extracted using these nonlinear tech-
niques contain different discriminatory information than the 
features extracted from linear approaches alone. Because they 
attack the speech recognition problem in a radically different 
manner, these reconstructed phase space derived features are an 
attractive research opportunity for improving speech recognition 
accuracy. 
 

1. INTRODUCTION 
 
In our previous work [1, 2], we demonstrated the use of recon-
structed phase space (RPS) derived features for speech recogni-
tion tasks.  We formulated the RPS derived feature vector, built 
statistical models over those features for classification, and com-
pared our nonlinear methods to a baseline recognizer that used 
the traditional MFCC feature set on an isolated phoneme classi-
fication task over the TIMIT corpus. The purpose of this work is 
to extend the nonlinear methods we developed, in order to com-
bine the nonlinear based RPS derived features with the tradi-
tional MFCC feature set to achieve a boost in accuracy over 
what each feature vector could possibly do in isolation in a 
speech recognizer. With this objective in mind, we briefly de-
scribe the methodology that was established in our previous 
work, and simultaneously develop the process by which this new 
joint feature vector is created. 
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The central premise of the nonlinear techniques presented 
here is that RPSs retain the nonlinear dynamics of a speech time 
series. A RPS is produced by establishing vectors in whose 
elements are time-lagged versions of the original time series. If 
the original time series is given by
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where τ is the time lag and is the embedding dimension. RPSs 
have a strong theoretical justification provided in the nonlinear 
dynamics literature, and have been proven to be topologically 
equivalent to the original phase space of the generating system 
[3, 4]. Given this fact, the features extracted from RPSs may 
contain more and/or different discriminatory information than 
the typical spectral features, which are rooted in linearity as-
sumptions of the underlying signal [5]. A typical RPS plot of a 
speech phoneme is given below, where 
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Figure 1: Reconstructed phase space plot of the phoneme '/ow/' 

As evident from the figure, geometric structure appears in the 
RPS that takes the form of a bounded subset of orbits as . 
These geometric structures or bounded subsets of orbits are 
known as attractors and are revealed in Figure 1. 
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2. RECONSTRUCTED PHASE SPACE DERIVED 
FEATURES 

 
2.1.  Time lag and embedding dimension determination 
 
In the absence of a priori information about an experimental 
time series, the question of the correct choice of time lag and 
embedding dimension must be addressed to ensure proper recon-
struction of the dynamics of the system. Two common methods 
frequently discussed in the literature to guide the choice of time 
lag are the first zero of the autocorrelation function and the first 
minimum of the automutal information curve. Such criteria en-
deavor to reduce the information redundancy between the lagged 
versions of the time series. Choosing too small of time lag 
causes the attractor to be compressed, and choosing too large of 
time lag causes the attractor structure too spread out as shown 
below.  
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Figure 2: Time lag comparison in RPS for a typical speech pho-

neme 

By examination of the autocorrelation and automual information 
criteria, and visual inspection, it was determine that 6τ = is an 
appropriate value for subsequent analysis. 

For the embedding dimension choice, a well-known algo-
rithm called false nearest neighbors can be used, which tabulates 
the percentage of false crossings to determine when the attractor 
is unfolded. Trajectories that cross indicate that the attractor is 
not completely unfolded, and consequently, the embedding di-
mension should be increased. A histogram plot (shown below) of 
500 speech phonemes taken from TIMIT demonstrates at what 
embedding dimension the attractor is unfolded. 
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Figure 3: False nearest neighbors for 500 random speech pho-

nemes 

The mode of the distribution in the figure is at d and there-
fore, d is the embedding dimension chosen for most of the 
subsequent analysis. 
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2.2.  Feature selection 
 
The feature set that is finally extracted from the RPS representa-
tion relates to a quantity known as the natural distribution or 
natural measure of an attractor [6, 7]. The natural distribution is 
defined as the fraction of time that the trajectories spend in a 
particular neighborhood of the RPS as t  and the size of 
the neighborhoods goes to zero. For experimental data, an esti-
mate of the natural distribution can be performed with a Gaus-
sian Mixture Model (GMM) built over the feature vectors given 
by,  
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where are vectors that constitute the RPS, is the mean 
vector (centroid of attractor), and 

nx xµ
rσ is the standard deviation of 

the radius in the RPS defined below, 
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The x serves to zero-mean each phoneme attractor, while rµ σ  
normalizes out amplitude variation from phoneme to phoneme.  

It is clear from Equation (2) that the natural distribution 
features endeavor to capture the time evolution of the attractor in 
the RPS as the distinguishing characteristic of speech phonemes. 
This feature set affirms that the natural distribution and its 
attractor structure (or part of it anyway), remains consistent for 
utterances of the same phoneme, while differing in an apprecia-
ble way among utterances of different phonemes. It is reasonable 
to assert this, because it makes sense to consider the fact that the 
system dynamics of the speech production mechanism, as cap-
tured through the natural distribution, would represent a particu-
lar phoneme utterance, and that some portion of the dynamics 
would approximately remain constant for a particular utterance 
of the same phoneme. 

While this feature set does capture the position of the points 
in the RPS, it does not capture the flow or trajectory as the at-
tractor evolves as illustrated in Figure 4. The trajectory informa-
tion also can have discriminatory ability and can be appended to 
feature vector using both first difference and delta coefficients 
typically implemented when computing spectral features. The 
RPS derived feature vectors that contain the trajectory informa-
tion are given in Equation (4), 
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It should be pointed out that the feature vectors in Equation (4) 
also constitute a valid RPS, since the trajectory information is a 
simply a linear combination of time-delayed versions of the 
signal. 
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Figure 4: RPS of a typical speech phoneme demonstrating the 

natural distribution and the trajectory information 
 
2.3.  Joint feature vector 
 

The RPS derived features can also be used in unison with 
the MFCC feature set to create a joint or composite feature vec-
tor. The reason for creating the joint feature vector is that the 
MFCC feature set has been successful for speech recognition in 
the past, and utilizing them with the RPS derived feature set will 
increase classification accuracy, if the information content be-
tween the two is not identical. The joint feature vector then is 
given by 
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where is given in Equation (4) and O  is the typical 
MFCC feature set (12 MFCCs, energy, deltas, and delta-deltas). 

( , ,&d
n

τ ∆x t

There are two central issues that arise when assembling the 
joint feature vector: probability scaling and feature vector time 
speed mismatch. The first issue arises due to the fact that the two 
feature sets each reside in their own unique feature space, which 
must be modeled differently. This difficulty will be addressed in 
the next section. The second issue is the result of the fact that 
there is one RPS derived feature for almost every time sample, 
while there is one MFCC feature vector for every analysis win-
dow; meaning that, there are approximately 160 RPS derived 
features for every 1 MFCC feature vector if one assumes an 
analysis window of 160 time samples. This time speed mismatch 
issue is solved by simply replicating the MFCCs for every RPS 
derived feature vector in the spectral analysis window.  
  

3. MODELING TECHNIQUE 
 
Statistical modeling of the RPS derived features was done using 
HTK. The model choice for both the RPS derived features and 
MFFC features sets was a simple one state HMM with a GMM 
state distribution. The model choice is justified, since the task is 
isolated phoneme classification, which requires a less complex 
model than that used during continuous recognition. The number 
of mixtures for the RPS derived features is set at 128. This num-
ber was derived empirically by examination of the accuracy 
versus number of mixtures curve described in [1]. The number 
of GMM mixtures necessary to achieve a high quality distribu-
tion estimate of these feature sets is quite high, because a large 
number is required to properly capture the complex attractor 
structure present in the RPS. An example of GMM modeling of 

the RPS derived features is shown in Figure 5. As evident, the 
GMM clusters accurately adjust to the attractor shape in the 
RPS.  

 
Figure 5: GMM clusters and modeling of the RPS derived fea-

tures 

As aforementioned, the joint feature vector must be mod-
eled appropriately, because its components (RPS and MFCC) 
have completely different characteristics. To address this issue, 
the joint feature vector is modeled using two different streams, 
which can be implemented effortlessly in the HTK architecture 
[8]. One stream is for the RPS derived features and one stream is 
for the MFCC features. The stream model of the GMMs is given 
in the equation below  
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where 0 1ρ≤ ≤ . The ρ in the equation above is the stream 
weight, which must be determined empirically to ensure that the 
evaluation of the two distributions is scaled properly, since the 
number of mixtures required for the two features sets vary dras-
tically (128 for the RPS derived features and 16 for the MFCC 
feature set). 1ρ = is equivalent to the baseline MFFC feature set 
system, while 0ρ = is equivalent to )x  feature set sys-
tem. 
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4. EXPERIMENTS 

 
In order to investigate the performance of the feature vec-

tors, isolated phoneme classification experiments were per-
formed over the TIMIT corpus. The motivation for conducting 
isolated phoneme classification versus continuous speech recog-
nition was to keep the focus on the acoustic data alone, using 
only the available acoustic data in a given segment to make a 
classification decision on what phoneme was uttered. Phonemes 
were extracted from the “SI” and “SX” sentences of TIMIT 
using the preexisting phonetic transcriptions and time stamps. 
The number of phoneme classes used in training was 48, and 
then 39 classes were considered for testing using the conventions 



discussed in [9]. Training and testing sets were taken from the 
predefined training and testing partitions provided in TIMIT. 
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Figure 6: Testing accuracy vs. stream weight for the joint fea-

ture vector 

 Feature set Test set 
accuracy 

( )5,6
nx  --  RPS derived features capturing 

natural distribution ( , Total = 
5 elements) 

5, 6d τ= = 31.43 % 
(15017) 

(10,6
nx )  --  RPS derived features capturing 

natural distribution ( , Total = 
10 elements) 

10, 6d τ= =
34.02 % 
(16353) 

(5,6,& )f d
nx  --  RPS derived features captur- 

ing natural distribution with first difference 
trajectory information appended 

 & first difference, Total = 10 
elements) 
( 5, 6d τ= =

 
38.06 % 
(18296) 
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(5,6,&
n

∆x

( 5,d τ

)  --  RPS derived feature capturing 
natural distribution with delta trajectory 
information appended 

Total = 10 elements) 6 & ,n= = ∆

39.19 % 
(18840) 

mc  --  12 MFCC features (Total  = 12 
elements) 

50.34 % 
(26372) 
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mO  --  12 MFCCs, energy, delta 12 
MFCCs, delta energy, delta-delta 12 
MFCCs, delta-delta energy (Total = 39 
elements) 

 
54.86 % 
(24199) 

 

Jo
in

t f
ea

tu
re

 se
t ny 0.25ρ = --  Joint feature vector: RPS 

derived feature capturing natural distribu-
tion with delta trajectory information ap-
pended & 12 MFCCs, energy, delta 12 
MFCCs, delta energy, delta-delta 12 
MFCCs, delta-delta energy (Total = 49 
elements) 

57.85 % 
(27810) 

Table 1: Performance comparison of the feature sets (48072 
total testing examples) 

In order to determine the correct choice of ρ (the stream 
weight), classification experiments over the testing set were run 
over a range of stream weights ( 0 1ρ≤ ≤ ), and the results are 
given in Figure 6. The peak accuracy occurs at 0.25ρ = . Now 
that the ρ is properly set, classification experiments over the 
testing set were performed using all of the different features sets 
(RPS alone, baseline alone, and joint). The results are summa-
rized in Table 1. The joint feature vector delivered the best per-
formance achieving 2.99 % improvement over the baseline. 
 

5. DISCUSSION AND CONCLUSIONS 
 
The results demonstrate that using RPS derived features in uni-
son with traditional MFCC features yield improvement over the 
baseline alone. This result suggests that the nonlinear methods 
are capturing information that the MFCC features neglect that 
could aid in the discrimination of speech phonemes. In addition, 
it is clear that the incorporation of trajectory information signifi-
cantly boosts the accuracy of the RPS derived features by more 
than 7 %. This shows that an intelligent choice of the embedding 
dimensions of the RPS can produce better accuracy as evident 
from the fact that the conventional RPS derived feature 
vector  ( x ) was inferior to the feature vectors that contained 
trajectory information. Additional future work will investigate 
the effects of amplitude scaling issues, higher dimensional RPS 
derived features, and the use of the RPS derived features in a 
continuous speech recognizer. Overall, the results show that the 
RPS derived features are an interesting technique to explore for 
increasing speech recognition accuracy.   
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